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1 Research Objectives 

We have been studying the problem of quantifying equipment survivability to high amplitude 
impulsive inputs. We are providing a general theory by which the analysis of such systems 
can be systematically simplified. The simplification eases the analytical burden associated 
with large scale dynamical simulations. We are developing a theoretical foundation for the 
study of large classes of equipment and its potential failure mechanisms. 

2 Technical Approach 

We have considered the problem of trying to compute the response of a large scale system, 
say an entire submarine or a section of such, to a shock related input. The entire system 
can be regarded as being comprised of a main structure to which several smaller but complex 
subsystems (i.e. the equipment) are attached. We divide the problem into two parts: (1) 
modeling the effect of the subsystem on the dynamics of the main structure; (2) modeling the 
response (and survivability) of a subsystem given its environmental loading. 

Satisfactory results on step (1) is a prerequisite for proceeding to step (2). Thus, the focus 
of our efforts during the project period has been on addressing part (1). If the equipment 
is dynamically "simple", i.e. has few resonant modes in the frequency band of interest, then 
a relatively simple modal description of the equipment is feasible and practical. Standard 
dynamic reduction techniques, e.g. component mode synthesis, can be utilized to construct an 
efficient and physically accurate model of the subsystem. It is usually the case, however, that 
the equipment can be described as "complex", by which we define as having many (possibly 
but not necessarily overlapping) resonances in the frequency band of interest. Our approach 
to this problem is to exploit its main complication. We have obtained an asymptotic model 
for the effect of a subsystem in the limit when the subsystem is "infinitely complicated." 

3 Review of Progress & Accomplishments 

We conceived the idea of representing subsystems through time-domain DtN maps as de- 
scribed in [5]. We later developed time-domain DtN maps to represent several classes of 
subsystems, including: 

1. Linear, undamped, discrete mechanical subsystems with arbitrary number of attach- 
ment point degrees of freedom [3]. 

2. Linear, damped, discrete mechanical subsystems with arbitrary number of attachment 
point degrees of freedom [7]. 

3. Slightly nonlinear, undamped, discrete mechanical subsystems with a single attachment 
point [4]. 

These maps have been extensively studied. Their main drawbacks to use in practice are 
that: 

1. They are computationally expensive to evaluate initially. 

2. They depend on too much detailed information about the equipment they represent. 

3. They are computationally expensive to utilize in practice. 
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In an attempt to address the first drawback, we examined the high modal density limit. 
We showed in [3] that replacing an undamped system with its "fuzzy" counterpart leads to 
0(1) error in a time scaling with t = o(e-1). Such a model still required an "infinite" amount 
of information, in that an entire mass-frequency distribution was required to construct the 
fuzzy DtN map, but didn't require a detailed eigenvalue analysis of the subsystem. 

We then addressed the issue of information. We posed the question, suppose we replaced 
the system not by its fuzzy counterpart, but any "smooth" system. What characteristics do 
we need to build into our smooth approximation in order to accurately model the real system? 
The answer to this question was eventually obtained, and we identified a small sequence of 
parameters (three, for a system with a single attachment point) necessary to accurately model 
a system to a time t = o(e-1). 

The "final" issue was that of implementation. The time-domain DtN is in the form of a 
convolution equation in time. When this is inserted into an equation of motion, the result- 
ing equation is an integro-differential equation (IDE) of the Volterra type. Time marching 
schemes for such equations are an area of active research, and stability problems are noto- 
rious. We developed a stabilized explicit time marching scheme for Volterra ID Es [6]. The 
method was only first order accurate, but fully explicit and has a large critical time-step. 

The IDE marching, however, was displaced by the development of the effective dynamical 
system theory described in [2] and [1]. In [2], we also present for the first time: bounds 
on the symbol of the DtN in the Laplace domain in terms of its Pade' approximants; a 
maximum entropy approximation for the DtN in the time domain; a derivation of a self-similar 
mass-frequency distribution for built-up subsystems; proven upper bounds on the dissipation 
constant; estimated bounds on the dissipation constant; and the first formal presentation of 
the three-parameter model. 

In [1], we examine the application of the effective dynamical system theory to continuous 
systems, and show that the limit of infinitely many modes is well represented in the theory. 

4 Conclusions 

We have developed an effective vibratory system theory which is analogous to the effective 
medium theory of composites. Both are asymptotic theories; both are most accurate when 
the properties of the system under consideration have a lot of fine detail (lots of layers in the 
composite, or lots of modes in the substructure); both have finite ranges of validity in terms 
of the independent variable. 

The benefits of using effective dynamical parameters to describe a subsystem include: (1) 
The model requires relatively few effective parameters to be measured or predicted. (2) The 
parameters are independent of the master structure to which the subsystem is to be attached. 
(3) The error incurred from using the approximate model has been well studied [2]. (4) The 
effective vibratory system model is much simpler than the full model. The drawbacks of the 
effective vibratory system model include: (1) The model is valid for finite time, in the absense 
of sufficient subsystem dissipation. (2) The effective subsystem model does not predict the 
displacement amplitudes inside the subsystem itself. 

5 Relevance to the Navy 

Numerically modeling the time-domain response of naval structures can allow the simulation 
of explosion studies without the cost of experimental model testing. This has value in shock 
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hardening modifications to existing structures, the design of new structures, and the design 
of ordinance to excite specific motions in unfriendly structures. 

Much of the shock energy absorbed by a large structure is transmitted into the substruc- 
tures. Modeling the response of the main structure thus requires an appropriate representation 
of the response of the substructures. The specific advances made to date allow substructures 
to be modeled with the addition of a few differential equations, depending on just a few 
parameters each. 

The anticipated prediction and general modeling of equipment failure modes will provide a 
firm theoretical foundation to develop shock-hardness tests of equipment. This is a necessary 
step in certifying COTS (commercial-off-the-shelf) equipment for naval applications. 
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EFFECTIVE DYNAMICAL PROPERTIES 

Paul E. Barbone * 
Department of Aerospace and Mechanical Engineering 

Boston University 
110 Cummington St. 

Boston, MA 02215 

ABSTRACT 

We discuss effective dynamical properties of complicated 
vibratory subsystems. A complicated vibratory subsystem 
is one in which the resonance structure contains a lot of 
fine detail. The first part of this paper describes an anal- 
ogy between the effective vibratory subsystem theory and 
the effective medium equations used to model composite 
materials. The second part of this paper presents an exam- 
ple application of the effective vibratory subsystem theory. 
The effective subsystem theory is used to model a contin- 
uous elastic rod. Features of the nonuniform limit w -> oo 
are shown to be reproduced by the effective vibratory sub- 
system theory. 

INTRODUCTION 

We describe the modeling of a complicated vibratory 
subsystem in terms of an "equivalent" effective vibratory 
subsystem. The "effective vibratory subsystem" is that sub- 
system which is characterized by the "effective dynamical 
properties" (mass, stiffness, damping) of the subsystem un- 
der consideration. Modeling a subsystem in this way is 
analogous to modeling a composite material in terms of an 
effective medium. In the next few paragraphs, we try to 
explore this analogy to provide some background to the ef- 
fective vibratory system theory. We follow this with an 
example which shows how the effective vibratory system 
theory can be applied. The example chosen reveals an in- 
teresting feature of the modal description of subsystems: 
nonuniformity of the limit u —> oo and N -> oo. We study 

this limit in detail in the context of the example of an elastic 
rod subsystem. 

EFFECTIVE MEDIUM ANALOGY 

The mechanical properties of composite materials are 
often described in terms of "effective" material constants. 
The effective medium description of the composite is accu- 
rate when the length scale of deformation is much larger 
than the typical length scale of the microstructure. The ef- 
fective medium theory is much easier to work with than the 
complete 3-D description of the composite material. Not 
only is it easier to perform an analysis with the effective 
medium equations, but it is much easier to measure effec- 
tive material constants than it is to measure the full 3-D 
microstructural geometry and properties. 

A well known simple example of an effective medium 
theory is that describing long waves in a finely layered elastic 
rod. The displacement field u(x, t) in the rod satisfies the 
equation: 

(E{x)u'(x,t))' - p(x)ü(x,t) = 0. (1) 

Here, E(x) is the Young's modulus of the rod and p(x) 
is the mass density. We let h denote the distance over 
which the properties of the rod change substantially (i.e. 
E(x)/E'(x) = 0(h)) and we let I denote a reference length 
in the rod. Then the effective medium description of the 
displacement field is given by: 

Financially supported by Office of Naval Research. 

«(a;, t) ~ ü(x, t) + 0(h/l, xh2/l3) 

Eeffü"(x, t) - peffu(x, t) = 0. 

(2) 

(3) 
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E'L = lim U 

Peff = lim L 
L->oo 

1 FEW 
Jo 

1 /"%(*) 
Jo 

da; 

da; 

(4) 

(5) 

By solving (3), one obtains an approximation of u{x, t) as 

described in (2). The approximation is most accurate when 

the elastic properties of the rod have a lot of fine detail; i.e. 

when h/l ■C 1. Two simple measurements are required to 

evaluate the effective medium coefficients, Eeff and peff- 

In analogy with the effective medium theory, Barbone, 
et al. (1998) have introduced an effective vibratory sys- 
tem theory to describe complicated vibratory systems. A 

complicated vibratory system is one in which the resonance 

structure has a lot of fine detail. The effective vibratory sys- 

tem theory has similar advantages to the effective medium 
theory: it is easier to model the effective system, and the 

effective coefficients are much simpler to measure. 

Just as in the case of the effective medium theory, the 
effective vibratory system theory is an asymptotic theory. 

It is valid in the limit e = Aw/fio ->■ 0, where Aw is the 
mean spacing between natural frequencies of the vibratory 

system and flo is a reference frequency parameter of the 

vibratory system. 

We can extend the analogy further by noting that both 
theories have limited regions of validity in terms of the in- 
dependent variables. In the case of the effective medium 

theory, small dispersion errors build up over distance lead- 
ing to 0(1) contributions when 

x = 0{lz/h2). (6) 

Since, by assumption, h/l -C 1, this distance is very large. 

For the effective vibratory system theory, small phase dif- 
ferences gradually add up to give 0(1) error when 

t = 0(Aw/fi*,) (7) 

Again, by assumption, Aw/fi0 « 1, so this time is very 

large. 

An effective medium theory that corrects for the disper- 

sion effects just mentioned can be constructed (Shuman & 

Barbone, 1998). The equation for ü takes the form (Shuman 
& Barbone, 1998): 

Eeffü"(x,t)-peffÜ(x,t)+(h2/l2)[au"(x,t)+ß'ii{x,t)] = 0. 

(8) 

We see from (8) that the effective medium is no longer a 

simple elastic rod, but has additional terms in the equa- 

tion. The two new coefficients, a and ß, depend on higher 

order correlations of the medium properties. An effective vi- 

bratory system theory that is valid for undamped systems 

beyond 0(Aw/172) has not yet been developed, and is still 

an active area of research. 

From this discussion, we conclude that the effective vi- 

bratory system theory of Barbone, et al. (1998) is anal- 

ogous to the effective medium theory used in composites. 
The challenge of extending the theory to a wider range of 
validity, and exploring the limitations of the theory as it ex- 
ists remain. In the remainder of this paper, we shall briefly 

describe our effective vibratory subsystem theory in the con- 

text of a specific example problem. Then we will apply the 

theory to a case which is formally outside its region of va- 
lidity: modeling a continuous system.1 In particular, we 

shall show that the nonuniform limit at w = oo, N = oo, 
where N is the number of modes, is reproduced exactly by 
the effective vibratory system theory. This buoys our con- 
fidence that the effective theory, though derived for finite 

dimensional systems, remains valid for infinite dimensional 

systems. 

EFFECTIVE DYNAMICAL SUBSYSTEM THEORY 

Here we describe the effective vibratory subsystem the- 

ory of Barbone, et al. (1998). We shall do so in the con- 
text of the simplest possible example of a "master system" 

which can interact with a "complicated substructure." The 
"master structure" is a linear harmonic oscillator. The mo- 
tivation for using an effective model for the substructure is 
our interest in determining xo(t), the displacement history 
of the harmonic oscillator (master structure). The oscil- 

lator is coupled to a complicated substructure through a 
single attachment point. All motion is assumed to be re- 

stricted to be unidirectional. Analogous systems have been 

studied recently by Weaver (1996,1997), Strasberg and Feit 
(1996), and Nagern et al. (1997). This is a special case 
of the systems studied by Barbone and coworkers in (Bar- 

bone, 1995; Barbone and Goldman, 1996; Cherukuri and 

Barbone, 1998; Barbone, et al, 1998). The equations of 

motion for the entire system can be written in the following 
1The effective vibratory system theory in Barbone, et al. (1998) is 

derived for systems with a finite number of degrees of freedom. 
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form: 

Mx'o + Kxo(t) 

N 

k0xo{t)-^2Knxn(t)    =    f0(t) 

f(t)-fo(t). (9) 

(10) 
n=l 

mn,xn + Knxn(i)    =   Knx0 (t) (11) 

Here, M and K represent the mass and stiffness, respec- 

tively, of the master oscillator. xo(t) represents its dis- 

placement. The subsystem is characterized by the mass con- 

stants mn and stiffness constants K„. Its configuration is de- 

scribed by the N dimensional vector x = {x{, i = 1,..., N}, 

which is zero at equilibrium. The master system is coupled 

to the subsystem through the vector of coupling constants 

{«j, i = 1,..., N}. k0is related to Ki by k0 = 53n=i «n- For 
a complete solution, initial conditions must be prescribed. 

The equations of motion using the effective vibratory 
system theory are 

Mx0 + Kx0(t) 

fo(t) 

MTy\t) + 2bMTtly(t) + k0y(t) 

x0(t) 

f(t)-f0(t),    (12) 

MTy\t), (13) 

kox0(t), (14) 

£<,(*) +0(e4t4)(15) 

Here y(t) is a dummy (scalar) variable, which has the in- 
terpretation of being the displacement of an additional har- 
monic oscillator. The effective mass MT, stiffness k0 and 

damping coefficients T?0, are (in general) given in terms of 

the mass constants of the subsystem under consideration. 
In this example, the effective mass is simply the total mass 
of the subsystem, 

N 

MT = ^2 m„, (16) 
n=l 

Here, mn is the nih mass of the subsystem. The effective 

stiffness is similarly simple in this example. It is the same 
as the high frequency stiffness, k0: 

N N 

k0 = YlKn = Yl m"Ct'n- (17) 
n=l n=l 

w„ = y/Kn/mn is the nth natural frequency of the subsys- 
tem (with its attachment point held fixed.) The effective 

mass and stiffness together define the subsystem frequency 

parameter fi = ^k0/Mr- 

The effective dissipation constant r\0 is given by 
N 

Vo = X] mnUJn- (18) 
n=l 

The damping term appearing in (14) is written in terms of 

the effective critical damping fraction, b, which is given in 

terms of rf0 by solving the equation (Barbone, et al., 1998) 

T)0 = MTÜ(2 cosh-1 &)/TIV&
2
 - 1. (19) 

Thus we have replaced the original (iV+1) DOF (degrees 

of freedom) undamped system, (equations (9 - 11)) with a 2 

DOF dissipative system (equations (12-15)). Equation (15) 

indicates that Xo(t) is a good approximation for xo(t) when 

e < 1, up to times t = o(e_1). As described by Pierce, 

Sparrow and Rüssel (1993), Weaver (1996,1997), Strasberg 

(1996), Strasberg and Feit (1996), and Cherukuri and Bar- 
bone (1998), dissipation can render the above approxima- 
tion valid for all time. The dissipation must be sufficient to 
cause significant decay before the error has time to build up. 

That is, the decay time must be shorter than t = o(e-1); 

i.e. the intrinsic critical damping factor, 77, of the subsystem 

must be 77 » e. (See Cherukuri and Barbone (1998), eqn. 
27; Strasberg (1996), eqn. (10).) 

We note that the effective dynamical properties are in- 

dependent of the master structure to which the subsystem 
is attached. This is one of the benefits of the effective vi- 
bratory system theory which is not available in other "fuzzy 
structure" theories. Thus for the purposes of further explor- 
ing the properties of the effective vibratory system model, 

we shall work in terms of the input impedance, as in (Stras- 
berg, 1996). 

Exact and Effective Input Impedances 

The exact and effective input impedances are not meant 

to approximate each other. Using Zeff, the effective input 

impedance, however, provides an estimate xo(t) which ap- 

proximates xo{t) as specified in equation (15), above. From 
equations (13) and (14) we find 

/o     =     -iuZeffX0, (20) 

0? 
z°» = -l"MTw-2mu-^       (21) 

The exact impedance follows from transforming equations 

(10) and (11) and is 

N u2 

Zexact = -IW Y, "V,2    ",,2- (22) 
n=l 

U); W° 
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APPLICATION TO ELASTIC ROD 

In the rest of this paper, we shall consider the subsystem 
to be an elastic rod. The continuous elastic rod can be 

approximated to any degree of accuracy by a sufficiently 

high number of vibrational modes. We denote the number 

of modes used to represent the elastic rod by JV. As JV -> oo, 

we recover the exact representation of the rod. 

For any finite value of JV, we can replace the resulting 

JV DOF subsystem by the 1 DOF "effective subsystem." 

The effective properties of the subsystem, however, become 

singular as JV -¥ oo. At first sight, this may seem to inval- 

idate the effective system theory. We shall show, however, 
that this behavior is necessary to capture the correct infinite 

frequency limit as JV -¥ oo. 

More specifically, let us denote the impedance of the 

elastic rod approximated by JV vibrational modes by Zexact{N). 

We note that the limit JV -»• oo of Zexact(N) is nonuniform 

in w. That is, 

lim   lim Zexact # lim   lim Zexact. 
TV—»oo w—»oo u—»oo TV—»oo 

We shall find, however, that 

lim   lim Zexact    =     lim   lim Zett 
TV—»oow—»oo TV—»oou>—»oo 

lim   lim Zexact 
W—KX TV-»00 

lim   lim Zett. 
u—»ooTV—»oo 

(23) 

(24) 

(25) 

Nonuniformity of Exact Impedance as w -»• oo 

Here we describe the nonuniformity in the limit of the 
exact impedance. We first consider JV = fixed. Taking the 
limit of the exact impedance (22) as u -¥ oo, we find 

.   TV 

ZeXact ~ — ^2 m«wn = iko/v w ->• oo; JV = fixed. 
W n=l 

(26) 
The above limit holds for any finite value of JV. It shows 

that the impedance of the substructure at w = oo is always 

springlike, independent of the substructure. 

Let us reconsider this limit in the context of the elastic 
rod. We suppose that the elastic rod is attached at its 
left end to the master structure and is free at the right 

end. The equations (9-11) still apply, but we must allow 

JV -> oo. Each oscillator represents one of the infinitely 

many vibrational modes of the fixed-free elastic rod. The 

drive point impedance at infinite frequency of an elastic rod 
is just that of the infinite rod: 

Zexact ~ pcA JV -»• 00JCJ -> oo. (27) 

Here, p is the mass density of the rod, A is its cross sectional 

area, and c is the wave speed in the rod. 

Clearly, (26) and (27) disagree with each other. This 

demonstrates the nonuniformity expressed in equation (23). 

It is well known that the appropriate limit to capture the 

infinite degree of freedom system is to take JV -> oo first, 
and then w -» oo. 

We shall now show that Zefj is also nonuniform in the 
limit JV,w -> oo. Further, we shall show that it is nonuni- 

form in precisely the same way that Zexact is. This result 
gives us some confidence that the analysis in Barbone, et al. 

(1998), performed in the context of finite degree of freedom 
systems, can be applied to the limiting case of continuous 

systems as well. 

BEHAVIOR OF Zeff AS u;,JV -»■ oo 

The limit w -» oo with JV = fixed is straightforward. 

From (26) we find 

Zeff ~ —Mr"  = iko/v 
w 

w -> oo; JV = fixed. 

(28) 

The fact that (26) and (28) agree shows that Zeff accu- 
rately represents Zexact in the limit u -¥ oo with JV = 
fixed. 

In order to evaluate the limit JV -^ oo, we must consider 
the behavior of the indiviual effective dynamical coefficients 

appearing in Zeff as functions of JV. We shall examine the 
limiting behavior of each of the coefficients as JV -> oo. 

The elastic rod and its modal description in the con- 
text of fuzzy structures was previously studied by Stras- 

berg (1996). From his results, we obtain expressions for the 

modal mass coefficients and natural frequencies. These are: 

w«    =    (n ~ 2^7rc^L (29) 

mn    =   2pc2A/ulL. (30) 

Here, the length of the rod is L. Using these allows us to 

define the effective dynamical coefficients as functions of JV. 
We emphasize that JV is the number of modes of the rod 

that are to be included in its modal description. 

Behavior of MT as JV -> oo: 

The effective mass of the subsystem is given by (16), 

with the substitution (29) and (30): 

TV TV 

MT(N) = Y, mn = 2pc2AlL £u,"2. (31) 
n=l n=l 
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This sum can be evaluated in closed form in terms of the 
Polygamma function.2 Using Abramowitz and Stegun (1972, 

eqns.   6.4.5 & 6.4.12) helps us to write 

MT(N)    =   pAL[l-^'(N + h] (32) 

~   PAL[1 - -2 AT"1 - 0(N~2)]    JV->oc(33) 

Equation (33) shall be used shortly to evaluate Zeff(N). 

Behavior of k0 and fi as N -> oo: 

The effective stiffness of the subsystem is given by (17) 

with (30): 

JV TV 

k0(N) = J2 ™»<4 = 2pc2A/L 53 = (2pc2A/L)N   (34) 
n=l n=l 

We note that the effective stiffness becomes infinite with JV. 

Given k0(N) and MT{N), we can determine Q(N): 

Ü(N)    =    ^k0(N)/MT(N) (35) 

~    (c/L)y2iV(l + 0(Ar-i)). (36) 

Behavior of r]0 and b as N -> oo: 

Finally, we need to determine the behavior of b(N) as 
N -¥ oo. As a step to this, we must first find ri0(N). From 

(18) and (29) and (30) we find 

N 

T)0(N)    =    ^mnun (37) 
n=l 

4pcA 
N 

^(2n-l)-1 (38) 

4pcAA 
n   L2 

logAT + 0(l)]. (39) 

In evaluting (38) we used Gradshteyn and Ryzhik (1965; 
eqn. 0.132, pg. 3). 

To find b{N), we substitute (39), (33) and (36) into (19). 
Simplifying this result yields 

2   loSjy ~ 2 cosh"1 b/Wb2 - 1. (40) 

Equation (40) indicates that b(N) ~ ßy/N. We substitute 

this into (40) and solve to leading order to obtain 

b ~ y/N/2,        N -> oo. (41) 

Evaluation of Zeff(N): 

We now substitute (33), (36) and (41) into equation (21) 

to find the effective impedance for large N: 

-iu:pAL(l + OiN'1) 
Zeff(N) 

c 
(1 + 0(2V-i/2)) g^(l + 0(iV-i/2))- 

(42) 
It is easy to verify that the limit of (42) as w -¥ oo with 

iV = fixed recovers (28). It is similarly easy to see from (42) 

that the limit N -¥ oo with u = fixed yields 

Zeff ~ 
—iupAL 

iioL  ' 
c 

N ■ oo;u;: fixed. 

Taking the limit of (43) as u> ->• oo yields 

-eff pcA N -> co;u; -t oo. 

(43) 

(44) 

Equation (44) is in complete agreement with (27). 

As an interesting aside, we note that the w = 0 limit of 

(43) yields 

Zeff ~ -iiopAL = —üJMT,    N -¥ oo; u -+ 0.       (45) 

This agrees with the same limit of the exact impedance. 
Equations (44) and (45) show that in the limit N -¥ oo, 

Zeff(uS) is "doubly asymptotic," at the u> = 0, oo limits. 
This is also true at finite N, but the effective dissipation at 
finite N cannot be evaluated using this information alone. 

We have thus shown that the effective impedance, pre- 
dicted by the effective vibratory system theory, has the same 

nonuniform limiting behavior as u> —> oo and N —)• oo as 

does the exact impedance. That is we have shown that 

lim   lim Zexact    =     lim   lim Zetf, (46) 
N—>oow—>oo N—tooui-Mx> 

lim   lim Zexact    =     lim   lim Zeft. (47) 
w->oo N-too ui-¥oo iV->oo 

CONCLUSIONS 

We have described the effective vibratory system the- 
ory in terms of an analogy with effective medium theory of 

composites. We noted that both are asymptotic theories; 

both are most accurate when the properties of the system 

under consideration have a lot of fine detail (lots of layers in 

the composite, or lots of modes in the substructure); both 
have finite ranges of validity in terms of the independent 

variable. 
2We used Mathematica to find this. 
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The benefits of using effective dynamical parameters to 

describe a subsystem include: (1) The model requires rela- 

tively few effective parameters to be measured or predicted. 

(2) The parameters are independent of the master struc- 

ture to which the subsystem is to be attached. (3) The 

error incurred from using the approximate model has been 

well studied (Barbone, et al., 1998). (4) The effective vibra- 

tory system model is much simpler than the full model. The 

drawbacks of the effective vibratory system model include: 

(1) The model is valid for finite time, in the absense of suf- 
ficient subsystem dissipation. (2) The effective subsystem 

model does not predict the displacement amplitudes inside 

the subsystem itself. 

We have also described an example subsystem: an elas- 

tic rod. Since the effective vibratory system theory has 

been derived in the context of finite dimensional subsys- 

tems, the applicability of that theory to this subsystem can 
be questioned. Nevertheless, the continuous subsystem can 

be represented as a limiting case of finite dimensional modal 

approximations. We have shown that the limiting effective 
impedance of this subsystem has the same behavior as the 

limiting exact impedance. This result boosts our confidence 

that the effective vibratory subsystem theory can be used 

for infinite dimensional as well as finite dimensional subsys- 

tems. 
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1    Abstract 

Large scale dynamic simulations can often be simplified by appropriately replacing large portions of 

the domain by a Dirichlet to Neumann, or DtN map [7]. Here we consider the problem of representing 

a linear dynamical subsystem by such a map. The exact DtN map is computed as a modal summation 

and its properties are studied. Bounds on the symbol of the DtN map in the Laplace domain are 

obtained. The exact map is then approximated, in particular in the high modal density regime. In the 

high modal density limit, we obtain the result that a subsystem can be accurately represented with 

just three parameters. Within such an approximation we obtain representations based on a maximum 

entropy representation, self-similar or fractal representation, and a rational function representation. 

The rational function representation leads to the interesting result that any complicated dynamical 

subsystem with a large number of degrees of freedom is asymptotically equivalent (in the limit of 

infinite modal density) to a single mass-dashpot-spring system. We end with numerical examples 

showing the efficiency of the rational function approximation. 
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1    Introduction 

Substructuring and "reduction" or "condensation" procedures have been used to simplify large scale 

numerical calculations since the mid 1960's [9, 10]. In typical condensation procedures, one begins 

with a complete model of the so-called "slave" subsystem, and projects the response of the slave 

subsystem onto a relatively small subspace. The subspace is typically developed from a combination 

of rigid body modes, dynamic modes, and constraint modes [6]. 

Such techniques are especially useful when the subsystem has relatively few eigenvalues in the 

frequency range of interest of a given simulation. Then the subsystem can be represented by relatively 

few component modes, and its response is relatively simple to simulate and to understand. We are 

mainly concerned here, however, with the opposite case: that is when within any frequency range of 

interest, a very large number of eigenvectors of the subsystem are necessary to accurately characterize 

its response. We consider such a subsystem to be complicated.3 This limit has been examined in the 

context of a specific example by Weaver [19, 20], Strasberg & Feit [18], Nagern, et al. [13], and in 

other special and more general cases by Pierce and coworkers [16, 15], and Barbone and coworkers 

[2, 5, 8]. 

Rather than the condensation approaches mentioned above, we choose to represent the substruc- 

ture through its Dirichlet to Neumann, or DtN Map [7]. In the context of dynamic substructure 

representation, the DtN map takes displacement histories on the boundary of the substructure into 

current forces/tractions applied at the same boundary. Accordingly, the forces are the Neumann 

data, and the displacements are the Dirichlet data. Given the exact DtN map representing a slave 

substructure, the presence of that substructure is exactly taken into account when computing the 

dynamics of the master structure. 

Though exact DtN representations of substructures may be available, approximate representa- 

tions are often attractive. There are at least two reasons for this. First, the approximate represen- 

tation may provide sufficient accuracy at greatly reduced computational cost. Second, and perhaps 

more importantly, an approximate representation may involve only a few gross parameters of the 

dynamical system, sometimes as few as three as we shall show. These parameters can be easily 

estimated, thus permitting simulations to be performed without detailed knowledge of the dynamic 

properties of the substructures. This is an especially important advantage when the substructure is 

very complicated. 

In this paper, we consider the problem of constructing and approximating time-domain DtN 
3 Some authors refer to such subsystems as "fuzzy" substructures." 
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representations of very complicated substructures. We shall focus here on the special case of a 

substructure which is attached to the master through a single point. In section §2 we formulate the 

problem to be solved in order to find the DtN. We give the exact DtN in section §3, and discuss 

various of its properties in section §4. These include bounds on the DtN in the Laplace domain 

which are, we believe, presented for the first time here. We also derive various bounds on many 

of the gross dynamic properties of the subsystem in this section. We then move on to the special 

case of high modal density systems in §5. By expanding the DtN asymptotically in powers of 

the modal spacing, we find that an approximate DtN can be constructed that depends on as few 

as three parameters. We call these the "effective dynamical parameters," and their identification 

represents one of the central contributions of this paper. On the basis of our high modal density 

theory, we consider three "canonical representations" in section §6. These are: the maximum entropy 

representation, the self-similar or fractal representation, and the rational function representation. 

The rational function representation leads to a startling equivalence: That undamped but sufficiently 

complicated substructures are asymptotically equivalent (in the limit of zero modal spacing) to a 

single spring-dashpot-mass system, up to simulation times proportional to the inverse of the modal 

spacing. Specific formulas for the coefficients of the reduced system are given. Finally, we give some 

examples applying our theory for complicated subsystems in section §7. 
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2    Formulation 

We consider a dynamical subsystem which has a quadratic potential energy function in the N degrees 

of freedom, xn, n = 1,...,N. We shall assume that the dynamical system is attached to the outside 

world at only one attachment point. The displacement of the attachment point from equilibrium 

is denoted by xo(t). We will denote by fo(t) the force that is applied to the attachment point. 

The "DtN" condition that we will derive represents a map from xo(t) to fo(t). Thus, the effect 

of the dynamical subsystem can be included in a dynamical simulation by employing the following 

boundary condition at the attachment point: 

fo(t) = M[x0(t)}. (1) 

Here, M denotes the DtN map. 

In what follows, x0 and xn are purely unidirectional. The extension to many attachment points 

and three dimensional displacements follows in a future contribution. 

In the case when /0 = 0, we can write the potential energy function as 

V(x0,x) = -[x-Kx + 2x0/c-x + fc0a;o2]. (2) 

Here, x is an N dimensional displacement vector, K is an N x N positive definite matrix, K is an N 

dimensional vector of spring constants, and k0 is a coupling spring constant. The potential energy 

function must be invariant to rigid body translation [15]. Therefore, for all a 

V(x0 + a,x + ap) = V(x0, x). (3) 

In (3), p is an N dimensional vector with each component equal to unity. Substituting (2) into (3) 

yields 

Kp    =    -K (4) 

k0   =   — p • K — p • K p. (5) 

We introduce the positive definite mass matrix M which allows us to write the kinetic energy 

function as: 

T(x) = - [mox0
2 + x • M x] . (6) 

Lagrange's dynamical equations of motion [11] gives us the equations of motion for our system 

as: 

Mx + Kx(t)    =    -Kx0(t) (7) 

mox0 + K ■ (x(t) - px0(t))    =   f0(t). (8) 



3   EXACT DTN MAP . 4 

3    Exact DtN map 

An exact DtN map can be constructed by solving (7) exactly and substituting the result into (8). 

An exact solution of (7) can be constructed in terms of a Green's function. The Green's function 

itself shall be found in terms of the modes of vibration of the dynamical subsystem. 

3.1    The Green's function 

The Green's function, g(t — r) satisfies 

Mg(t-r) + Kg(t-T)    =    -KS(t-r), (9) 

g(t - T)    =    0 t < T. (10) 

Equation (7), together with equations (9) and (10) show that x(t) is given by 

*(*) = /     g(t - T) X0(T) dr. 
J—oo 

(11) 

We now solve (9) for g in terms of a normal mode expansion. We begin by introducing a change 

of dependent variables 

g(t)=M-1/ay(t). (12) 

Here, M1/2 is the unique positive definite matrix which satisfies M1/2 M1/2 = M. We shall not 

have the need to calculate M1/2 explicitly here. Substituting (12) into (9) and left multiplying both 

sides by M-1/2 yields 

y(t) + MT^KM-1/2 y(t) = -M~^
2
K (t). (13) 

The matrix M_1/2KM-1/2 is N x N, symmetric and positive definite. It therefore possesses A'' 

distinct, orthonormal eigenvectors ^n',n = 1,...,N, and N (not necessarily distinct) positive 

eigenvalues w2: 

M-1/2KM-1/2 £(n) = u;2£(n) (14) 

Since £^n' span RN, we can write 

y{t) = J2t{n)Zn(t). (15) 
n=l 

We now substitute (15) into (13) and make use of the orthonormality of £^ to obtain 

zn{t) + u2
n zn(t) = -£(n) • MT1/2* (t). (16) 
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Further, causality requires 

zn{t) = 0 t < 0. (17) 

Solving (16) subject to the condition (17) yields 

zn{t) = -— £(n) • M-
X
'

2
K sin(wn*) t > 0. (18) 

We obtain g(t) by using (18) in (15) and (12) to find, for t > 0 

N    1 
g{t) = -M-1/2 Y, —£(n)[£(n) • M-^K] 8in(wnt). (19) 

With g(t) determined, the exact DtN condition follows directly using (11) and (8): 

fo(t)=m0x0(t)-K-px0{t)- /     K-M-
1
/

2
^— £<">[£<">•M-^KjsmWnCi-TjiroMdT. (20) 

Equation (20) can be simplified by utilizing the concept of modal mass. O'Hara and Cunniff [14] 

define the modal mass as (see also Pierce [15], and generalizations in Cherukuri & Barbone [5]): 

mn = (p-M1/2^)2. (21) 

From the definition of ^n', we note that 

M-^KM-1/2^") =w2£(n). (22) 

We left multiply (22) by K ■ K^M1/2, and use (4) to find 

K • M"1/2^") = -w2p • M1/2^"*. (23) 

We now use (23) and (21) to simplify (20) and obtain 

fo(t) = m0xQ(t) + kox0(t) - y^ mnWn sinu>n(t - T) X0(T) dr. (24) 
J-°°n=i 
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4    Properties of DtN map 

The exact DtN map (24) has many interesting properties which we now describe. These include 

relations among the various coefficients appearing in (24), as well as the behavior of the Laplace 

transform of the DtN in the complex plane. 

4.1    The properties of the modal masses 

O'Hara and Cunniff [14] show that the sum of the modal masses defined as in equation (21) is equal 

to the total mass of the substructure, i.e. 

N 

Yjmn = MT (25) 
n=l 

For completeness of our presentation, we show a similar proof here. From (21) and the orthonormality 

of £(n), we have: 

f>„    =    f^p-M1/^"))2 

n=l n=l 
N 

=    ^(p-M1/2^)(p-M1/^(n)) 
n=l 

=   p • M^M1/^ 

=   p- Mp 

=   MT. (26) 

A relation that is stated by neither O'Hara and Cunniff [14] nor Pierce [15] is that between the 

attachment stiffness k0 and the modal masses. To show this, we consider the sum: 

f»n = fxtp-M^w 
n=l n=l 

N 

=  ^(P-M^XP-M1/^")) 
71=1 

N 1 
=    ^^(p.f^KM-'^WjKp.M1/2^)        by (22) 

n=l " 

=   p.KM-'/'M'/'p 

=   k0       by (4) and (5). (27) 

Here, we again used the orthonormality of the £("'. 
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The two parameters MT and k0 can be used to define a "bulk" frequency scale for the subsystem. 

Thus we define Q, the effective or bulk or gross frequency parameter of the subsystem as: 

ft2 = k0/MT. (28) 

4.2    The DtN in the Laplace domain 

We now consider the Laplace transform of (24) and the resulting DtN in the transform domain. To 

that end, we first introduce the following definitions: 
oo 

F0(s)    =     ff0(t)e-stdt (29) 

o 
oo 

X0(s)    =     fx0(t)e-stdt (30) 

o 

Multiplying (24) by e~st and integrating with respect to t then yields: 

F0(s) = s2moX0(s) + K{s)X0(s) (31) 

Here we have introduced K(s), the symbol of the DtN operator under Laplace transformation. It is 

given by the function: 
°° N 

K(s) = k0- / ]T mnul sin((j„t) e~sidt. (32) 

o  "=1 

In obtaining (31), we assumed that both Xo(t) = 0 and fo(t) = 0 for all t < 0. Further, we assumed 

that 

xo(0) = 0       ;        z0'(0) = 0. (33) 

The transform of the DtN operator, K(s) can be easily computed.   Evaluating the integral 

indicated in (32) for 1l(s) > 0 yields 

K(s) = k0-J2mn-^ (34) 
n=l n 

We use (34) to continue the definition of K(s) over the entire s-plane. We note by inspection that 

K(s) has no singularities in the complex s plane except those at the points sn = ±iujn. 

4.2.1    Bounds on K(s) 

Here we find it convenient to consider K(s) as a function of s2. That is, we consider the function: 

N 4 

K2{s
2) = K{s) = k0-Tmn-^-1 (35) 

^        s   +UJn 
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We observe from (35) that K2{z) (z = s2) is a rational function of z with singularities only at the 

points zn = —u>n < 0; i.e. only on the negative real axis. 

Further, we note that the analytic continuation of K2 (z) into the whole of the z plane is Herglotz 

[3]; i.e. l{K2{z)) < 0 <=*■ l(z) < 0,1{K2(z)) > 0 <=> l{z) > 0 and I{K2(z)) = 0 <=> Z(z) = 

0. To show this, we let z = x + iy (x and y are real), and obtain from (35) 

N 4 

K2(z) = k0-Yl mn(x+"ß2+y2 [(x + u,2) - iy]. (36) 

The fact that K2{z) is Herglotz thus follows by inspection, noting that mn > 0 and wn is real. 

Finally, we note that K2(z) -> k0 as z -> oo for any argz. These properties together are sufficient 

to guarantee that K2{z) is bounded by its Pade' approximants [4]. 

Following the notation of Bender k, Orszag (1978), an N-M Pade' approximation shall be denoted 

by P»(z). That is 

K2(z)*P»(z)=^=0anZ^ (3?) 

Lim=0 °mZ 

Without loss of generality, bo is chosen to be 1. Clearly, the fact that K2{z) is rational implies that 

the Pade' sequence will converge to K2 (z) for JV and M sufficiently large. Smaller values of N and 

M, however, provide upper and lower bounds on K2(z): 

PN-\Z) < P»+1 (z) < K2(z) < P»£ (z) < P»(z) \/N,z>0 (38) 

Thus, each diagonal or nearly diagonal Pade' approximant provides a bound on K2(z): the higher 

order the approximant, the sharper the bound. 

Pade' sequences can be developed from the Taylor expansion of K2(z) about any point. In 

particular, the values of z = 0 or z = oo correspond to the physical limits of low and high frequency 

response, respectively. Thus, if the low or high frequency limiting behavior of the system is known 

or can be accurately estimated, then a Pade' approximation can be formed there. Such estimates 

can be used to provide bounds on equipment models that will be presented later. 
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4.3    Low and High Frequency Approximate DtN Maps 

Equation (24) represents the exact DtN for the dynamical subsystem under consideration. In gen- 

eral, 2VV" parameters are required to characterize the subsystem. When N is small, (24) can be 

conveniently used directly. In practice, however, N can be arbitrarily large. In such situations, it is 

often beneficial to consider approximations to (24) in which the DtN can be accurately represented 

by relatively few effective parameters. In this section, we discuss two limiting cases in which this is 

possible. These are the special cases when the excitation is either of very low frequency or very high 

frequency. These provide approximations valid not only at small and large s2, but by the results of 

§4.2, also bounds on the behavior of K(s) along the entire real s—line. The bounds thus found can 

be used to find bounds and interrelations between the the bulk or effective subsystem parameters, 

as we show below. 

4.3.1     Low frequency limit 

When the frequency of the excitation is much lower than the natural frequencies of the subsystem, 

then the inertia of the subsystem is negligible to a first approximation. To obtain an approximate 

DtN in this case, we rewrite (7) as 

Kx(t) = -KX0(t)-Mx. (39) 

Solving (39) by iteration yields 

x(t) = -K^KXoit) + K^MK^KXoit) - K-1MK-1MK-1K d *°.® + .... (40) 

We now substitute (40) into (8) and simplify using (5) to obtain 

f0(t) = m0 x0(t) + MT £0{t) - p • MK"'Mp ^^ + .... (41) 

Here, we have used the relation MT = P • Mp, which represents the total mass in the subsystem. 

We note that to leading order, the force is merely accelerating the subsystem as a rigid body. 

Alternatively, we can derive a relation equivalent to (41) in the Laplace domain. Expanding (31) 

in a Taylor series about s — 0 yields 

F0(s) = s2m0 + K(0) + aK'(0) + \s2K"{0) + ^s3tf'"(0) + JLS
4
K""(0) + Xo(s).       (42) 

The individual coefficients in the series can be evaluated from (34) and (27). Then (42) simplifies 

to: 

Ms) 
N N 

¥ft>n R v-^ Win 
s2(mo + MT)-S4£5 + Ss£^- 

n=l      n n=l      n 

Xo(s) (43) 
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Inverse transforming (43), and using (21) yields (41). 

It is interesting to consider a Pade' approximation of K(s) obtained from this expansion. We 

can construct the P} and P\ Pade' approximants (about z = 0) of K2(z) = K{s) by matching their 

asymptotic expansions about z = 0 to the coefficients in (43). This yields 

P2V)    <    K(s)<Pt(s2) (44) 

P2V)    =     r.      SW        ., T—(«) 
MT+«2E:=1KK)+«4 

(EÜLI (m„K))   - MT Eli KK) IM- T 

pi(s2)   =    S1M2L  (46) 

Equation (44) provides not only approximations of K(s), but also upper and lower bounds for all 

s2>0. 

Equation (44) can also be used to find relations between the different coefficients that appear in 

those equations. For example, evaluating (44) at s = oo, and using (28) and (55) yields: 

N 

n2 £(mn/a;2) < MT. (47) 
n=l 

Further, recognizing that P\ > Pj Vs2 gives us: 

(JTimn/ul))   >Mr^(m„K). (48) 
\n=l / n=l 

These results shall be used later. 

4.3.2    High frequency limit 

Alternatively, the time scale of the excitation may be much higher than any of the natural frequencies 

of the dynamical subsystem. In this case, the inertia term in equation (7) dominates. We rewrite 

(7), therefore, as 

Mx(i)    =    -KXOW-KX (49) 

Mx(t)    «    -Kx0(t) (50) 

Taking two time derivatives of (8) and simplifying using (50) yields 

/o(t) = m0io
WW + *o*o(0 - K ' M^KXoit). (51) 

Carrying the process still further yields: 

f0(
iv\t) = mox0(

vi){t) + kox0
{iv)(t) - K ■ M-lKx0(t) + K ■ MTxkM-lKx0(t). (52) 
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At very high frequencies, the last term in (51) can be neglected yielding 

j0(t) = m0xoiiv)(t) + k0£o{t). (53) 

Prom (53), we see that in this regime the force is resisted primarily by the mass at the attachment 

point and the elasticity in the equipment mount. Based on the interpretation of (53), we refer to 

the quantity k0 as the "high-frequency stiffness." 

It is again interesting to consider the identical approximation in the Laplace domain. By doing 

so, we shall obtain further bounds on K(s). Taking the Laplace transform of (52) and noting (31) 

yields 

F0(s)    =   s2moX0(s) + K{s)X0(s) (54) 

K(s)   ~   fc„ - K • M_1
K s-2 + K • M-'JCM-'K s-4 + o(s-6) s->oo (55) 

From the expansion (55), we can form the P\ and P° Pade' approximants, this time about the point 

s = oo. Thus we obtain: 

AV)<    *(«)    <P,V) (56) 

k0 K ■ M-1« + UK ■ M-1«;)2 - k0n ■ M-^M-1«] s~2 

Again, we have not only approximations of K(s), but also bounds for all s2 > 0.  Equation (56) 

implies that (58) must be nonnegative at s = 0. This gives us: 

(K-M-
1
*)

2
 > fc0« • M-^M-1«. (59) 

Expanding (57) in the neighborhood of s = 0, and using (43) and (56) yields 

k0
2s2 < MT K • M_1

KS
2
. (60) 

Equations (59) and (60) can be rewritten in terms of the modal masses and natural frequencies. To 

do so, we use (4,21 & 22) to find: 

N 

K-M
_1

K   =    ^m„w4 (61) 
71=1 

N 

K-M^kM^n   =   ]£mnwj[. (62) 
n=l 



4   PROPERTIES OF DTN MAP 12 

Combining (59-62) (and using (28) as necessary) yields bounds on the modal sums: 

TV 

MTfi4<£mn<4 

TV 

YsmnU)n 
n=l 

n=l 

TV 

> k0 ]T mnw£ 

(63) 

(64) 
n=l 

Equation (64) shows that the behavior of the higher order moment (J2Tnn^>n) IS determined by the 

behavior of lower order moments. Equation (63) shall be used in a later section. 
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5    High Modal Density 

In the last section, we simplified the form of the exact DtN map (24) by making assumptions 

regarding the form of the excitation (i.e. high or low frequency.) In this section, we instead make 

an assumption regarding the complexity of the dynamical subsystem and thereby simplify the DtN 

map. 

As noted earlier, the form of the DtN map in (24) is appropriate when the subsystem has few 

modes. In that case, the subsystem can be reasonably categorized as simple. On the other hand, 

when the subsystem has many modes in the frequency band of interest, i.e. is complicated, we seek 

an alternate representation that is more efficiently developed and evaluated. 

Below we change the sum in (24) to an integral over frequency. We then approximate the 

kernel of the frequency integral and bound the resulting error. Making the error bound as small as 

possible identifies a sequence of parameters that govern the dynamics of the subsystem. Our analysis 

indicates that these parameters are fundamental in describing the dynamics of the subsystem. The 

identification of these parameters is one of the main contribution contained in this paper. 

5.1    Replacing sum by integral 

When the modes of the subsystem are closely spaced in frequency, the sum over modes in (24) can 

be accurately approximated by an integral. Such a substitution is the basis of the fuzzy structure 

representations of Pierce, Sparrow and Rüssel (1995). We shall also make use of Pierce et al.'s [15] 

notion of mass as a function of natural frequency. 

Unlike Pierce et al., we exactly replace the sum over modes with an integral over a frequency 

parameter. To effect this replacement, we first introduce the generalized function, m(u>), defined by 

"TTM    =    Yl TnnS(U} ~wn) (65) 
n=l 

m(0)    =   0 (66) 

(67) 

Using equation (65) in the exact DtN condition (24), allows us to rewrite that exact relation as 

/     —^-u>3 sinuit - T) X0(T) du dr. (68) 
-ooJo       <k> 
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5.1.1    Properties of m(w) 

The function m(w) inherits its properties from the modal masses in terms of which it is defined. 

Using equation (65) in equations (26) and (27) yields directly 

r°° dm. 

I Jo 

I o     duj 
{u)dw   =   MT (69) 

°°u>2^Mdu;   =   k0 (70) 
o        ™> 

In addition, those inequalities derived in section §4.3 have counterparts in terms of m(u). 

5.2    High modal density approximation 

When the modes of the subsystem are closely spaced in frequency, the kernel in the integral operator 

in (68) is rapidly varying. Under those conditions, the action of the operator can be simulated in 

terms of another integral operator with a smooth kernel. With this motivation in mind, we therefore 

consider splitting m(u>) into a "smooth" part and a rapidly varying part as follows: 

m(u) = m(uj) +me ( — J . (71) 

Here, we have introduced the parameter e defined by 

e = Au/Cl < 1. (72) 

Aw is taken to be a measure of the modal spacing, for example Aw = max(w„ - wn_i), or the 
n 

average over all n of (wn - wn_i). Thus e is a nondimensional measure of the modal spacing. An 

approximate DtN map (or fuzzy structure approximation) is obtained by neglecting the me (v) term 

in (71) and replacing m(a>) by m(w) in (68). The key to obtaining an accurate approximate DtN 

lies in choosing fh(u>) appropriately. 

We note that (71) leaves m(u) unspecified in its relation to m(uj). Thus we are considering 

the action of any continuous m(u>) as an approximation for the action of m(w). This notion is in 

contrast to the presentation of Cherukuri k Barbone (1996), who require m(u>) to be the limit of 

m(w) as e -¥ 0. Obviously, some choices of m(w) will lead to better approximations of the DtN 

map than others. In order to yield an accurate DtN map, some properties of the exact m(w) must 

be duplicated in m(u). Precisely what aspects of m(w) must be duplicated in fh(uj) in order to 

accurately represent the dynamics of the subsystem is determined below, in an error analysis. 
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5.3    Error Bounds 

5.3.1    Error Analysis 

To obtain an approximate DtN, we substitute (71) into (68) to write: 

ft      /-OO pi      /*0O    J — 

f0(t)    =   mox0(t) + kox0(t) - /    /     — (LJ)W
3
 smu(t-T)X0(T) dudr + error(r),   (73) 

Jo Jo     du 
ft     rOO     J _ 

error(r)    =    -/    /     —  me(-) w3 sinuj(t - T)X0(T) du>dr. (74) 
/o Jo 

Here we have made the assumption that 

x0(t) = 0       V t < 0 (75) 

We shall now analyze the error in the force, error(r). In what follows, we shall assume that all 

functions are regular enough to carry out our calculations, and that all integrals and limits are 

defined. Integrating (74) by parts three times with respect to t and using (75) yields: 

error(t) =-/°°^ ["»«(7)] l"2 *o(t) - x0"(t) + f cosu>(* - r) X0'"(T) dr\ du. (76) 

In terms of a new integration variable v = w/e, equation (76) can be rewritten as 

error(r)    =     f° ^{v)dv x0"(t) 
Jo     dv 

-e2 rv^{u)duxo{t) 
Jo dv 

- f I r ^-(v) cosev(t - T) dv\ X0'"(T) dr. (77) 

We now introduce the following integrals of me(u): 

mi[u)    =     j   me(v')dv' (78) 
Jo 

mn{u)    =     f  m„_i(i/)di/ (79) 
Jo 

Integration by parts with respect to v allows us to write: 

f°° dme . , , . , , 
/     ——(v) cosevt du   =    me{i/) cos evt\ 

Jo     dv °° 

+et7ni(i/)sinei/i| _ 

+  ... 

+(-l)ne2ni2nm2n(I/)cosez/i|[/=oo 

/■OO 

+(-l)Vn+1i2n+1 /    m2n+l(v) smevt dv (80) 
Jo 
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Here we have integrated by parts an odd number of times. One can, of course, integrate by parts an 

even number of times to obtain a similar result. The expansion indicated in (80) can be continued 

indefinitely, provided that the integrals at each stage converge. This convergence can be guaranteed 

for any m{w) by an appropriate choice of fh(u). In order for the limits (at v = oo) indicated in (80) 

to exist, we require: 

lim mAv)    =   0 (81) 

lim mAv)    =   0 j = l,...,2n (82) 

Substituting (80-82) (with n > 2) into (77) now allows us to write error(f) as 
ft      fOO 

error(i) = (-l)^1^1 /    /    m2n+1(v) smev{t - r) dv (t - r)2n+1 x0'"(r) dr.        (83) 
Jo Jo 

5.3.2    Error Bound 

We now seek to bound error(t). To that end, we note 
ft     /-oo 

error(i)    < 

< e2n+2t 

< e2n+2, 

fX      fOO 
(_l)"+ie2n+i  /    /    m2n+1(v) Sinev(t - r) dv (t - r)2n+1 X0'"(T) dr 

Jo Jo 
I/-00 ft 

/    m2„+i(v)  /  sinev(t - T) x0'"(T) drdv 
Jo Jo 
IfOO ft 

/     vm2n+i(v)   /   cosev(t — T)x0"(T) dr dv 
Jo Jo 
/■OO ft 

t2n+1 /     \vm2n+i{v)\ /   |cosei/(t-r)a;o"(r) \dr dv 
Jo Jo 

fOO ft 

< e2n+2t2n+1        \vm2n+1(v)\dv       \x0"(r)\dr 
Jo Jo 

fOO ft 

< e2n+2t2n+1        \vm2n+1{v)\dv       dr \x0"(max)\ 

=   e2n+2(t)2n+2C2n+1 |x0"(max)| (84) 

Here, we have introduced the constant C2n+i which is defined as 
/■OO 

C2n+i= \vm2n+i(v)\dv (85) 
Jo 

We note that for any m(w), m(uj) can always be chosen in such a way that C2n+\ exists. Further, the 

error grows with time as t2n+2. Thus, no matter how small e may be, the error becomes significant 

at a time t = 0(e_1). We note, however, that up to this point in the derivation we have neglected 

all forms of dissipation. If the subsystem under consideration has a small amount of dissipation (as 

shown in reference [5]) then the error will remain bounded for all time. In essence, this requires that 

all transient motion oi x0{t) has stopped before the error has had a chance to accumulate. 
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The source of the error The accumulation of error in this approximation is due to approxima- 

tions of the phase of the individual modes. Replacing the exact DtN (24) by the approximation (73) 

can be thought of as replacing the individual term in (24) by the following integral: 

j       ,u,n(l+e)/2 ^ 
m„u4sinwn(t-r) «  / m(w)u3 sin u(t - T) dw (86) 

wn£ Jw„(l-e)/2 

This approximation is valid only as long as the sine terms in the integral remain in phase with each 

other. To show this, we approximate the integral on the right of (86) in the following manner: 

  / fh(w)    v3    smw(t -T)(LJ «rh{wn)^n  / sinw(r-r)cL>      (87) 
wn£ JUn(l-e)/2 w»£ Jun(l-e)/2 

-m(wn)w3
n xr,(i+0/a (8S) 

«    ^%^2sino;n(t-r) sin (wBe(t - T)/2) (89) 
u)ne{t - T) 

«     ^tn)1 Kc(* - r)/2 - afc3(f - r)3/12) 2 8ina,„(t - r)   (90) 

«    m(tün)w*sinwn(*-T)(l-o;Je2(t-T)2/6) (91) 

Therefore, we see that the error is due to accumulation of frequency approximations in the substitu- 

tion of the sum for the integral. Thus, there is no need to appeal to any argument based on limiting 

dissipation [20]. 
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5.4    Effective Dynamical Parameters 

Equations (81) and (82) state the conditions under which the error in the DtN map is bounded 

(see equation (84).)  Through equation (71) these conditions specify certain restrictions on m(w) 

in its relation to m(w). In satisfying these conditions, we shall identify several effective dynamical 

parameters which characterize a given dynamical subsystem. 

To do so. we first consider the nth moment of the mass-frequency distribution —r^- (u) 
du 

In = p\nd^{v)dv (92) 

We now integrate (92) by parts to obtain 

/n = ^(-l)''i/"-%i(i/). (93) 
j=0 

Thus we conclude that conditions (81) and (82) are equivalent to 

f° v^{u) du = 0,       j = 0,..., 2n. (94) 
Jo dv 

From the definition of me(w/e) in equation (71), we obtain 

/"^.dme =0 ^    r°°ui(dm{!jj)_dm(y)))(L) = Q_ (95) 

J0 du J0 du> aw 

Using the definition of m(w), equation (65), in (95) yields 

/ Jo 

oo N 

u>3—(u)du = Y^ wX' (96) 
dw 

n=l 

Equation (96) shows that in order to accurately represent a dynamical subsystem in a simulation, 

one must choose the moments of m(w) to agree with those of the subsystem itself. These parameters, 

the frequency moments of the modal masses, are in this way fundamental in describing a system's 

dynamical response. We call them the "effective dynamical parameters." 

5.4.1    Physical interpretation of effective parameters 

For this section, and through the rest of this paper, we shall consider the special case of n = 1 (c.f. 

equation (82)). That is, we shall require that 

/ 
Jo 

oo   .Ä N 
dm{<j)dij   =    53 mn   =MT (97) 

o    dw 
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dm, 

Jo       a* 
u—{bj)du   -    ]P unmn   = T)0 (98) 

L U)2-^(u)(kü     =     ]T   Wnm»     =k°- (") dw 

Here we have used the results of equations (25) and (27). We recall that Mr is the total mass of 

the subsystem, while k0 is the "high frequency stiffness." In (98) we have introduced the quantity 

r)0, which we shall call the "effective dissipation" of the subsystem. 

Equation (84) with n — 1 shows that if one chooses fh(uj) to correctly represent the total mass 

MT, high frequency stiffness k0, and the effective dissipation TJ0 of a subsystem, then the error 

incurred in a dynamical simulation will be bounded by 

error(t) < (ei)4C5 |x0"(max)| • (100) 

Prom equations (97-99) we can see that with each dynamical subsystem, we can associate a total 

mass and two frequencies. In what follows, we shall find it convenient to represent a subsystem in 

terms of its "frequency" parameter fi, (c.f. equation (28)) and "damping" parameter ao, which is 

defined by 

a0 = Vo/MTn. (101) 

In Appendix A, we show that üQ < 1 for all discrete dynamical systems. 

6    Modeling Dynamical Subsystems:  Canonical Representa- 

tions 

6.1    Canonical Representations 

In the last section, we determined those parameters of a dynamical subsystem that are important 

to describe the dynamics of that subsystem. That is, we determined which features of m(w) must 

be duplicated in fh(uj) in order to accurately reproduce the force at the attachment point. Beyond 

the specification of the effective parameters just described, however, rh{u>) remains unspecified up 

to now. 

In this section, we consider several canonical representations of dynamical subsystems that are 

based on different modeling perspectives. By "representation," we mean a function m{uf) which is 

used in the approximate DtN (73). In the rest of this section we consider different choices for m(<j) 
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which have prescribed values of MT, i]o, and k0. Each choice differs in its functional dependence 

on u, but nevertheless satisfies the conditions (97) - (99) above. Therefore, each choice will yield 

accurate results in a dynamical simulation as specified in (100). Thus the specific choice of fh{uj) as 

described here is more a matter of taste or ease of application than of accuracy. 

The three canonical functions we shall describe are derived from different perspectives. In the 

first, we shall derive an optimal representation based on information theory. The calculation pre- 

sented below is motivated by and is similar in both spirit and detail to that presented by Pierce 

in [17]. We include it as one perspective to obtain a canonical m(w). In the second approach, 

we consider the form of m(w) to be a self-similar function of frequency. This leads to a nonlinear 

functional equation which we solve for the function m(w). The third approach, the rational function 

representation, is motivated by the resulting simplicity of the approximate DtN map. It leads to a 

very satisfying physical analogy, which is presented in §6.4.3. 

In what follows, we shall find it convenient to work in terms of a nondimensional mass distribution 

function. Thus we introduce the nondimensional frequency v and nondimensional mass distribution 

fi(u) as follows: 

v    =   w/n (102) 

"M   -   ££«»>• (103) 

In terms of (102) and (103), the three conditions (97) - (99) take the form: 

li(v)dv   =   1 (104) / Jo 

/ 
Jo 

0 
oo 

o 

2, /     u2fi{u)du    =    1. (106) 
Jo 
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6.2    Maximum Entropy Formulation 

6.2.1    Derivation of p(i>) 

Because of the normalization property (104) of p(v), we may think of this function in the abstract 

sense as a probability distribution. Following up on this line of thinking, we may also consider the 

conditions (105) and (106) as constraints on fi(v). Thus we seek to find a fi{v) that maximizes 

the "entropy" or "uncertainty" subject to the constraints that (105) and (106) are satisfied. The 

uncertainty or entropy function for fi(v) can be written as [17]: 

/■OO 

H[ß] = -        n(v)log(n(v))dv. (107) 
Jo 

We wish to find n(y) such that H is stationary subject to the conditions (104 -106). Therefore, we 

introduce the functional II [fh] defined by 

r°° f°°   dm f°°   «dm 
U[ß) = H[n]-X0(       ndu-Vi-X^j    u—(u)du-ao)-X2(J    v2—{w)dv-l).      (108) 

Here, Ao - A2 are Lagrange multipliers enforcing the constraints. 

Making II stationary with respect to fi, A0, Ai, and A2 leads to equations (104-106) and: 

Jo 
5/i[log/z-l + Ao + Aii/ + A2i'

2] du = 0 (109) 
)o 

Equation (109) leads directly to the result 

^(i/)=exp(l-A0-Au>-A2i/
2). (HO) 

6.2.2    Evaluating the coefficients, A0, Ai, A2 

Substituting (110) into equations (104), (105) and (106) and rearranging yields the following equa- 

tions for Ao, Ai and A2: 

- - w (m) 

(113) 

A   =   e1-*0 

1      A?      AAX 

2     4A2      2A 

(114) 

Given a0, equations (111) - (113) are to be solved for A0 - A2. These values are then to be substituted 

into (110) to obtain n(v). In order to solve (111) - (113), we combine them to write a single equation 
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for the variable c = Ai /2%/A^: 

(a0 + c)spK exp(c2) erfc(c) = 1. (115) 

Once c is determined from (115), A/y/X^ can be found from (112). Finally, A2 is obtained from 

(113). We note that it is easy to verify that for any value of 0 < a0 < 1, equation (115) has a 

solution. 

6.2.3    Implementation of Maximum Entropy Representation 

In order to get the DtN map associated with the Maximum Entropy Representation of ^j(w), we 

substitute (110) (in dimensional form) into (73) to write 

/o(t)    =    kox0(t) - I n(t - r) X0(T) dr, (116) 
Jo 

/•OO 

n(t)    =   MTA       W
3
 exp(-Aiw/fi-A2w2/ft2)sinw(i)<L;. (117) 

Jo 

We note that Ai may be positive or negative, but A2 is strictly positive. We now evaluate the 

integral in (117) by writing sin(wi) as l{eiut} and integrating three times by parts to obtain 

xlj(tnt-Ai)  3 + -i-(im-Ai)2l [erfc((im-A1)/2v/Ä2")]e-2iA2m|.   (118) 

The error function is defined by erfc(2:) = -^ /z°° e~l dt  [1]. 

In the form (118), n(t) is difficult to use since the error function must be evaluated for complex 

argument. Of course, given the values of Ai and A2, this calculation could be done as a preprocess 

and the result tabulated. For more complicated functions of n(t), this would be recommended. For 

the special case of Ai =0, the error function drops out of the formulation. 
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6.3    Self-similar Formulation 

Here we formulate and solve the problem of determining the "limiting" fh'{uj) in a complicated 

subsystem. The subsystem is imagined to be made up a collection of smaller "minor" subsystems, 

each of which, in turn, is made up of a collection of still smaller minor subsystems, and so on. As 

the subsystems become more and more complicated, we hope to find a limiting form of the ^j (u>) 

function. 

To each minor subsystem, we shall prescribe three parameters: Mj, rjj, and kj.   Further, we 

define a "frequency" and "damping factor" for each minor subsystem defined as tij = y/kj/Mj, and 

a0j = rjj/Mjilj, respectively. In the Laplace domain, the DtN for each subsystem can be written 

as: 

Fj(s) = Mß)K(slÜj,a0:j) X(s). (119) 

If the minor subsystems are sufficiently complicated that their representation has reached its limiting 

form, then the function K will be the same function for all the subsystems comprising the whole. 

This is the essential assumption on which the following is based. 

We now consider a subsystem comprised of many smaller subsystems as depicted in figure 1. The 

sum of the forces in springs j must balance the force /o, thus 

/o = £/j. (120) 

Also, the dispacements of each of the subsystems are identical 

xQ=Xj       7 = 1,2,... (121) 

Combining equations (119) - (121) allows us to write 

Mofij^(s/fio,ao)X0(s) = ^Min^(s/%ao)X0(s) (122) 

We require (122) to hold for arbitrary XQ(S), which we can therefore cancel from both sides. 

We now pass to the limit in which the number of subsystems becomes infinite. For convenience, 

we nondimensionalize all frequencies with respect to fio, and all masses with respect to Mo. Therefore 

we make the following replacements in (122): 

a    =   s/n0 (123) 

üj    =   ujjüo (124) 

dm, 
Mj    =   Mo — (w) 

du) 
du (125) 
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(126) 

Thus we obtain an integral equation for ^(w): dm 

/•OO 

K(a,a0) =  r ^(u)K(a/u>,a0) du (127) 
Jo    °u 

In order to close (127), we must specify the relation between K(a) and ^j(^). If we assume 

that the relation between K(a) and ^(w) is the same here as it is in the case of simple oscillators, 

then such a closure relation can be obtained from equations (35) and (65). This yields, (for ^(w) dm i 'uuauicu iiuni ci^uauiuuo {ooj axiu V.uu7*   J.1110 j'iciua, ^iui     

analytic in the upper half u—plane) 

IT    -   firry 

(128) 
...  . 7T   o dm. 

We combine equations (127) and (128) to find the following homogeneous nonlinear integral equation 

for 4&H: 

?(^)=r?M?(-)-- (129) du J0    du>       du>   u)    UJ 

To solve (129), we replace z = log(i(r), v = logw and fi(z) = ^(ez) to write: 

/oo 

n{v)n{v — z) du. (130) 
-oo 

Equation (130) may be solved by Fourier transform. We denote by ß the transform of fi. Taking 

the transform of (130) leads to 

ß   =   ß2 (131) 

ß   =   1 (132) 

Thus, we conclude that 

^(w) = 5(w-wo) (133) 
aw 

Equation (133) describes the mass-frequency distribution of a single oscillator with arbitrary 

natural frequency wo- The implication of (133) is that only identical oscillators can be connected 

together (in the manner that we have assumed) such that the behavior of whole is the same as the 

behavior of the individual parts. 

Clearly the mass-frequency distribution in (133) is not representative of whole classes of com- 

plicated subsystems. While this result is not of practical interest, it is of interest to see where 

the assumption of self-similarity has lead. We note, however, that self-similarity was not the only 

assumption made in this section, and that perhaps the concept of self-similarity might still lead to 

valuable subsystem models. 
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6.4    Rational Function Approximation 

Here we consider representing fi(u) by a rational function of v. This representation has considerable 

benefits in terms of both ease of application and in terms of physical interpretation. 

To obtain a rational function representation of n(v), we must first choose a desirable form. We 

shall choose p(u) to be an even function of v. In order that the integral in (106) be well defined, we 

require that ß(v) be o{v~z) v -+ oo. These requirements lead us to choose the following form for 

fj.(v): 
Q 

^ = (i/4-2(a2-6>2 + (a2 + b2)2)' (13^ 

We note that more elaborate choices of n(u) can lead to higher order models with (presumably) 

greater accuracy than that chosen here, however (134) shall suffice to satisfy our three conditions 

(104) - (106). 

6.4.1    Evaluating the coefficients a, b and c. 

The three coefficients in (134) are to be determined by requiring (134) to satisfy equations (104) - 

(106). This leads to the equations [12] 

1    =    4fc(a2+62) (135) 

1  -   5" <137> 

In (136), 8 is defined so that tan# = b/a. Solving equations (135) and (137) in terms of 6 yields 

a   =    cos0 (138) 

b   =   sin 6 (139) 

c   =   4/7rsinö. (140) 

The value of 6 is determined from equation (136) which simplifies using (138-140) to 

^ = "o. (141) 
7T COS 6 

Thus, given ao for a particular subsystem, we determine 9 by solving (141). Then we obtain o, 

b and c from equations (138-140). We note that (141) has real solutions for 6 only for ao > 2/7T. 

Smaller values of a0 can be obtained by allowing 6 = n/2 + ij, as we shall discuss later. 



6   MODELING DYNAMICAL SUBSYSTEMS: CANONICAL REPRESENTATIONS 26 

6.4.2    Implementation of Rational Function Approximation 

The rational function approximation can be implemented in either convolution form, or in a form 

local in time. To obtain the convolution form, we merely substitute fi(i>) into (24). Since the kernel 

is a rational function of v, however, the resulting DtN can be written alternatively in a form that is 

local in time. 

To show this, we consider the non-dimensional DtN in the Laplace domain. Therefore we in- 

troduce K(a) which is non-dimensional Laplace transform of the approximate DtN resulting from 

fh(uj) (c.f. equations (31, 32, 68).) 

/■OO     poo 

K(o)    =    1- /     /    v3n{v) sin(vT)dv e'^dr 
Jo    Jo 

= 1-f^)^du (142) 

Here, K is nondimensionalized with respect to k0, and a is nondimensionalized with respect to fi. 

Thus with the definition (142), (31) becomes: 

F0(s) = s2moX0(s) + koK(s/n)X0{s). (143) 

When fj,(v) is a rational even function, as here, the integral (142) is easily evaluated by residues. 

The result is a rational function of a of the form [12]: 

K{a)    =    l-N{a)/D{a) (144) 

N{a)    =    (1 + 26(7) (145) 

D{a)    =    (<72+ 26ff + l). (146) 

We now substitute (144) into (143), multiply both sides by D(a), and inverse Laplace transform to 

obtain: 
d2 d2 

Vf0(t) = m0-^Vxo{t) + ko-^x0{t). (147) 

The operator P is given by: 

V = ^ + 26H^ + fi2 (148) 
atz at 

The form of the DtN (147) is much more convenient in implementation than the convolution 

form. For one, it does not require the full displacement history at the attachment point. Further, 

the evaluation of the force fo(t) at each time step is relatively efficient compared to a long time 

convolution. We shall show below an equivalent formulation which is not only local in time, but has 

an appealing physical analogy. 
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Before closing this section, we note that the form (147) with the coefficients as given is subject 

to the restriction of homogeneous initial conditions on f(t) and xo(t): 

/o(0)    =   0       /o(0) = 0. 

so (0)    =   0 (149) 

6.4.3    A physical analogy. 

In this section, we describe a simple model which corresponds to the local (in time) DtN (147). To 

start with, we rewrite (147) as 

d? 
fo(t)    =    mo-^x0(t) + f2(t), (150) 

Vf2(t)    =    ko^x0(t). (151) 

We now introduce a "dummy" displacement-type variable, y(t), defined by 

f2(t) = MTy(t);       1/(0) = 1/(0) = 0. (152) 

Substituting (152) into (151) and integrating twice with zero initial conditions yields: 

MTy\t) + 2bMTÜy(t) + k0y(t) = k0x(t). (153) 

Equation (153) is the equation of motion for a spring-dashpot-mass system in series. The pa- 

rameters MT and k0 are the mass and spring constants of mass-spring system, respectively. The 

coefficient b defined in equation (139) has the physical interpretation of the fraction of critical damp- 

ing. This implies that the dashpot constant C in the analogy is given by 

C = MTü/2b = k0/2bü (154) 

We emphasize that the physical analogy is exactly equivalent to the local DtN resulting from the 

rational function representation of fh(u). 

In terms of the "dummy" displacement variable y(t), the local DtN (150-151) can now be rewrit- 

ten as: 

d? 
fo(t)    =   mo-^x0(t) + MTy(t), (155) 

k0x(t)    =   MTy(t) + 2bMTny{t) + k0y{t). (156) 

Equations (155) and (156) are in the most convenient form for practical implementation. 
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6.4.4 Relation between critical damping parameter and effective dissipation parameter 

It is interesting to examine the relation between the critical damping parameter b from the phys- 

ical analogy and the effective dissipation parameter c*o that results from the high modal density 

approximation. These two can be related through equations (139) and (141). 

Underdamped case:    Provided b < 1, ceo and b are related by: 

7T-2sin_1& 

Overdamped case: When b > 1, (157) is still valid, but can be rewritten to a much more 

convenient form. We shall use the identity 

sin-1 x = 7T/2 + i cosh-1 x. (158) 

Thus (157) simplifies to 
2 cosh-1 & ,,„„x 

— Tltt- (159> 
The two relations (157) and (159) are summarized in the plot in figure 2. 

6.4.5 Estimated bounds on critical damping parameter 

In section §4.2 we showed that K{s) is bounded by its Pade' approximants. We have no such bounds 

on K(cr), however. It is interesting, nevertheless, to assume that those bounds derived in §4.2 hold 

for K(a), and thus derive estimated bounds for the critical damping factor, b. Therefore, based on 

equation (38) we shall assume: 

P?(s2) < k0K{s/Ü) < P}(s2). (160) 

We use the high frequency derivation of P® given by (57) and the low frequency expression for P* 

given by (46) in equation (160) to write 

 ^v 7 < koK(s/Q) < fjf/,      ,  ox. (161) 
ko + s-2 £„=1 mnui - ~ MT + s* £^ifo,M) 

We gain some confidence in our assumption of (160) by the fact that (161) is satisfied in both the 

s = 0 and s = oo limits. 

To obtain bounds on b, we substitute (144-146) into (161) and evaluate the result at s = Q, to 

obtain: 
fco2 K MT

2n2 

ko + fi-2 E„=i mn«4 - 2 + 2& - MT + n2 E„=1(m„/o;2) 
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Simplifying leads to 

MT/n2       x -   -    MTn4      x- ^bi> 

The inequality (47), however, shows the left hand side of (163) to be non-positive. The inequality 

in (63), on the other hand, shows the right hand side of (163) to be always non-negative. Thus we 

obtain the estimated bound on the critical damping coefficient, b: 

0<2b< ^T,1™?"" - 1. (164) 
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7    Examples 

In the examples that follow, we shall remove a large portion of the computational problem and 

replace it with a DtN boundary condition as we have described earlier. The DtN shall be computed 

either exactly (as indicated) or with a high-modal density approximation. The results of using the 

DtN shall be compared to results obtained by simulating the full dynamical system. 

7.1    Large oscillator connected to complicated substructure. 

The first system that we shall consider is that studied by Weaver in [19, 20]. It consists of a "large" 

mass-spring oscillator which is attached to a complicated substructure, as shown in figure 3. The 

equations of motion for the system are 

N 

Mx0(t) + Kx0(t)    =    ^Kn(z„(i)-x0) (165) 
n=l 

mnxn(t) + Knxn(t)    =    Knx0(t) (166) 
N 

K    =    YlKn- (167) 
n=l 

7.1.1    Exact DtN Formulation 

In order to apply the DtN concept, we rewrite (165-167) as follows: 

Mx0{t) + Kx0(t)    =   -f0(t) (168) 
N 

/o(i) = £>„(x„(*)-x0) (169) 
n=l 

To make the connection to our original formulation, we note that (166) is identical to (7), (167) is 

a special case of (5), and (169) is a special case of (8). 

In this example, m0 = 0, u£ = Kn/mn, MT = Z)„Tin, fi2 = k0/MT- Thus, (24) gives us the 

force as: 

fo(t) = kox0(t) - /     y^ mnLJ„ sina;n(f - r) x0(r) dr. (170) 
^-°° n=l 

Therefore, in order to determine the dynamic response of the mass, we must solve (168) with (170), 

subject to initial conditions 

xo(0)=A    ;    xQ(0) = B. (171) 



7   EXAMPLES 31 

7.1.2 Approximate DtN Formulation 

Alternatively, we can use the approximate DtN (155-156). For this example, (155-156) simplify to 

fo(t)    =   k0xo(t)-2bMTny(t)-k0y{t), (172) 

k0xo(t)   =   MTy(t) + 2bMTüy(t) + k0y(t). (173) 

Combining (172) with (168) yields 

Mx0(t) + (K + k0)x0(t) = 2bMTüy(t) + k0y(t). (174) 

Therefore, in order to determine the approximate dynamic response of the mass, we must solve (174) 

with (173), subject to initial conditions (171) and 

2/(0) =0    ;    2/(0) =0. (175) 

The differential equations (174) with (173) exactly represent the system depicted in figure 4. 

To evaluate the constant b, we must first evaluate i]0 which is given by (98) as 

N 
rlo = ^2^nmn. (176) 

n=l 

Then, ao = T]O/MTO, (by 101) and b can be evaluated by solving either (157) or (159), as appropriate. 

7.1.3 Example results 

Here we compare the results for a subsystem of N = 1000 masses attached to a single large mass. 

We compare the results of the approximate DtN, (174) with (173), to the results obtained by directly 

simulating the full system of equations (165-167). 

The large mass is M = 2, while its spring has spring constant K = 2. The values of w„ were 

chosen randomly between 0 and Q,max = 10. The values of mn were chosen according to a selected 

distribution, as 

mn=p(uj)ümax/N. (177) 

In all the examples, p(w) is chosen to be p(u>) = MTexp(-Xix>)/\, with A = 2.0. For the dynamical 

simulations, the initial conditions are given by (171) and (175), with A = 0 and B = 1. 

We consider two different subsystems with very different masses. In one case, the subsystem has 

mass MT ~ 0.25, while in the other case MT « 10. The two results are shown in figures 5 and 

6, respectively.  We note that remarkably different physical behavior results in the two cases.  In 
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each case, however, we see that the approximate solution, obtained from integrating just two second 

order equations, closely approximates the reference solution for times below about 50 units. Above 

those times, the approximation breaks down as predicted by the error analysis in section 5.3.1. 

7.2    Elastic rod connected to complicated substructure. 

We now consider the interaction between two elastic structures: a homogeneous elastic rod connected 

to a "complicated," randomly inhomogeneous elastic rod. See figure 7. We shall represent the 

inhomogeneous rod using a high-modal density DtN as we did in the last example. Indeed, to model 

the inhomogeneous rod, we follow similar steps as those outlined above. 

In figure 8, we plot the displacement profiles on the homogeneous portion of the rod at even 

time intervals. We plot the displacement predicted by the approximate DtN and compare that to 

the displacement predicted in the reference structure. The input is a Gaussian shaped pulse which 

propagates to the right. The right traveling wave is represented at 25 time-unit intervals by the 

large peaks centered at x = 10, 35, 60, 85. (The wave speed in the homogeneous rod is unity.) The 

right traveling pulse is reflected at the right end of the homogeneous rod. The reflected left traveling 

pulse is of lower amplitude. 

We see that the approximate and reference solutions agree exactly up to the reflection from the 

complicated substructure. The subsequent reflected pulses agree closely in shape and amplitude. 

The main difference between them is represented in the slow decay of the tail in the approximate 

solution. The elapsed time shown in the figures is not sufficient to show the pulse reflected from the 

far end of the complicated rod. The approximate solution does not predict this pulse, though it is 

present in the reference solution, of course. 



8   CONCLUSIONS 33 

8 Conclusions 

We have proposed the use of a time-domain DtN map to represent complicated subsystems in 

dynamical simulations. We derived an exact DtN map for a general linear-elastic system which is 

attached to the outside world at one point. We studied the properties of this map and found many 

interesting results including interrelations between bulk dynamical coefficients, and bounds on the 

symbol of the map in the Laplace domain. We also studied the high modal density or infinitely 

complicated limit, and derived the "effective dynamical parameters" governing the dynamics of a 

subsystem. These were used to construct various subsystem representations which are accurate in 

the high modal density limit. The most intriguing of these is the rational function representation. 

From this representation we were lead to conclude that a sufficiently complicated subsystem is 

asymptotically equivalent (as e -> 0) to a simple single spring-dashpot-mass system, (for t = o(e-1).) 

Several examples of our high modal density approximation were studied. The agreement between 

model and reference solutions was initially very good, but gradually deteriorated in agreement with 

the predictions of §5.3.1. 

The results presented here show that a sufficiently complicated subsystem can be accurately 

represented by a subsystem of much smaller dimensionality. The model system is dissipative, even 

though the original system is not. The dissipation models vibratory energy being transferred from 

the master structure to the slave subsystem [16, 18]. This analogy provides an interesting dynamical 

interpretation of the origin of damping in physical systems. 

Though our analysis is presented in the context of structural dynamics, it generally applies to 

any large system of oscillators. We emphasize, however, that the high modal density approximation 

presented here is valid only for simulation time = o(e_1). Further work is required to obtain a 

similar approximation valid beyond that time. 
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A    Proof that «o < 1 for all subsystems 

In this appendix, we prove that ao < 1 for all subsystems. The proof proceeds by induction. We 

first show that for a system with a single mode, ao = 1. Then we show if ao < 1 for a system with 

N modes of vibration, then ao < 1 with the addition of another mode of vibration. 

We recall the definition a0 given in (101) 

a0 = 7]0/MTn > 0. (178) 

Here, fi2 = k0/Mr, and Mr,r]0,k0 are the "effective dynamical parameters" defined in equations 

(97-99). 

Here we consider the values of Mr, T]0, k0 as functions of N. To that end, we define: 

N 

MN   =   £mn (179) 

(180) 

(181) 

(182) 

(183) 

(184) 

MN+i    =   MN + mN+i (185) 

VN+l     =    VN + mff+iWrf+l (186) 

kft+i    =   fciv + m,N+iuN+1. (187) 

Thus we can write the following equation for OL
2

N+1: 

<*« = ÄT <188> 

n=l 

N 

V N — Y2mnun 
n=l 
N 

kN = Y^mnUn 
n=l 

O2 
"AT = kN/MN 

OiN = r]N/MNClN 

To begin, we let N = 1 in (179-183) to find 

Oil = 1. 

From (179-181), we now note 

V1 +    MN   )\l +    MN   ^&~> 

(189) 
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For convenience, we are motivated to introduce the following variables: 

H = mN+1/MN       f = wjv+i/nw. (190) 

We note that these definitions hold in this appendix only, and are not to be confused with the 

definitions of fi and v given in the main text of the paper. 

In terms of /z and u, (189) can be rewritten as 

2      _ a% + 2aNfiu + pV 
a"^ ~     (1 + „)(1 + /^)    ■ (191) 

From (191), we conclude: 

a2
N+1 > 1      <^=>     a2

N + 2aNfiu + n2i'2 > {l + (i)(l + fiu2). (192) 

Simplifying the right hand side of (192) yields: 

a2
N+1 > 1      <^>      a2

N + 2pvaN - (1+ //(l + v2)) > 0. (193) 

We shall now show that a2
N + 2fiua^ - (1 + /u(l + v2)) > 0 is not satisfied for any 0 < aw < 1. 

We let a* be the positive root of 

a*2+2/wa*-(l + /x(l + i/2))=0. (194) 

It is easy to show that the second root of (194) is negative, a* is given by: 

a*    =    y/(l + (iu)2 + fi(l — u)2 - \iv 

>      y/(l + fJU/)2 - pv = 1. (195) 

Finally, we note that a^ = 0 leads to the right hand side of (193) being false. 

We conclude that 

a2
N+1 > 1      <^=>      aN > a* > 1. (196) 

Thus, ajv+i > 1 if and only if a^ > 1. Since ati = 1, 012 and all subsequent a'ns will be equal to or 

less than unity. 

It is worth noting before we close this section that the equality in (195) is achieved only for 

i/ = l. 
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B    Figures 

Figure captions 

Fig. 1 A subsystem composed of many smaller subsystems. Each subsystem is connected at its 

attachment point to a light rigid rod. The rigid rod defines the attachment point of the new 

"composite" subsystem. The attachment point displacement of the composite subsystem is 

x0(t), and the force required to specify that motion is f0(t). 

Fig. 2 Relation between critical damping factor, b, and "effective" damping constant, a0. The 

relation is described quantitatively in equations (152) and (154). 

Fig. 3 A large mass-spring oscillator connected to a complicated substructure. The substructure 

is represented by the collection of small oscillators. 

Fig. 4 The asymptotically equivalent system. The response of the master structure in this system 

is approximately the same as that depicted in figure 3. The substructure has been replaced by 

a spring-dashpot-mass structure. 

Fig. 5 Example la: "Large" mass-spring oscillator interacting with light but complicated substruc- 

ture. 

Fig. 6 Example lb: "Large" mass-spring oscillator interacting with heavier complicated substruc- 

ture. 

Fig. 7 A homogeneous elastic rod connected to an inhomogeneous elastic rod. The homogeneous 

rod is the main structure of interest. The effect of the "complicated" inhomogeneous rod on 

the dynamics of the other shall be represented by an approximate DtN map. 

Fig. 8 Example 2: Reflection from elastic bar with random mass density. 
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Figure 1: A subsystem composed of many smaller subsystems. Each subsystem is connected at 
its attachment point to a light rigid rod. The rigid rod defines the attachment point of the new 
"composite" subsystem. The attachment point displacement of the composite subsystem is x0(t), 
and the force required to specify that motion is /o(£)- 
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Relation between Alpha_o and critical damping factor 
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Figure 2: Relation between critical damping factor, b, and "effective" damping constant, ao- The 
relation is described quantitatively in equations (152) and (154). 
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*(0 

Figure 3: A large mass-spring oscillator connected to a complicated substructure. The substructure 
is represented by the collection of small oscillators. 

►y(t) 

Figure 4: The asymptotically equivalent system. The response of the master structure in this system 
is approximately the same as that depicted in figure 3. The substructure has been replaced by a 
spring-dashpot-mass structure. 
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Oscillator displacement with light subsystem attached 
T 

Figure 5: Example la:  "Large" mass-spring oscillator interacting with light but complicated sub- 
structure. 
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Figure 6:  Example lb:   "Large" mass-spring oscillator interacting with heavier complicated sub- 
structure. 
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Figure 7: A homogeneous elastic rod connected to an inhomogeneous elastic rod. The homogeneous 
rod is the main structure of interest. The effect of the "complicated" inhomogeneous rod on the 
dynamics of the other shall be represented by an approximate DtN map. 

Snapshots of displacement along rod 
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Figure 8: Example 2: Reflection from elastic bar with random mass density. 
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This article considers modeling the effect of complex subsystems on the dynamics of the main 
structure to which they are attached. It is proposed that the substructure (say a piece of equipment) 
be replaced by an equivalent set of forces which react back on the main structure. These forces are 
given as time convolutions of the displacements at the equipment attachment points. The 
convolution integral, which represents a time domain DtN (Dirichlet-to-Neumann) map, is 
approximated in the high modal density limit with determined error bounds. This approximation 
leads to a family of equipment representations. The simplest requires few measured equipment 
properties, though more information can lead to greater accuracy. Our approximate DtNs are 
demonstrated numerically in finite element simulations. © 1998 Acoustical Society of America. 
[S0001-4966(98)04709-2] 

PACS numbers: 43.20.Tb, 43.40.At [ANN] 

INTRODUCTION 

Analysis of problems involving simulations over large/ 
infinite domains can often be simplified by replacing a por- 
tion of the domain by a Dirichlet to Neumann, or DtN map.1 

Here we utilize the concepts of Dirichlet to Neumann map- 
ping to replace a dynamical subsystem by a set of forces 
f(f). We consider the subsystem to interact with the main 
structure through a finite number of degrees of freedom 
which we refer to as attachment points. The forces f(f) that 
the dynamical subsystem exerts on the main structure depend 
on the displacement histories of the attachment points. Thus 
a Dirichlet to Neumann map in this context is a map that 
takes displacement histories into current forces. Once the 
DtN map characterizing a dynamical subsystem is known, its 
effect on the main structure is completely determined. 

Approximate representations of dynamical subsystems 
(equipment) have two important advantages over exact rep- 
resentations or models. First, the approximate DtNs often 
provide enough accuracy while reducing computational 
costs. Second, approximate DtNs require relatively little ef- 
fort to formulate. Here we formulate an approximate DtN 
map based on a few gross parameters of the subsystem. 

Many methods have been proposed to model the effects 
of complicated substructures on the dynamics of the main 
structure. Soize2 has attempted to do so by treating the sub- 
structures as random structural elements, the parameters of 
which are imprecisely known. Because of the uncertainty in 
their structure, he has referred to them as "fuzzy structures." 
Given a master (main) structure with random attachments, 
Soize sets out to find the ensemble average of the response of 
the main structure. Following Soize's example, many other 
authors have used different closure approximations in an at- 
tempt to achieve the same goal.3"7 Statistical energy analysis 

"'Currently affiliated with Parametric Technologies Corporation, Waltham, 
MA. 

is also concerned with finding the ensemble average re- 
sponse of a random system. 

Pierce et a/.,8 on the other hand, found the "typical re- 
sponse" of a plate with a densely packed collection of oscil- 
lators. Crighton9 has noted that in order to make predictions 
about an individual realization of a system, one must seek a 
"typical response" of a complicated system, rather than an 
average response. Any introductory statistics text makes the 
point that knowledge of the average response alone is insuf- 
ficient to make judgments about the behavior of the indi- 
vidual. This has recently been emphasized in regard to fuzzy 
structures in Ref. 10. 

Our approach is to examine a complicated deterministic 
system. We obtain a model for the system which can be 
exact if sufficient information about the system is given. We 
consider approximations for the response of the system 
which exploit the one thing that we have assumed from the 
outset: the subsystem is complicated. Therefore, the number 
of modes in the frequency range of interest in the system is 
large. Thus we obtain an approximation that is valid for any 
individual subsystem, and not only for an ensemble. 

We conduct our analysis in the time domain (rather than 
the frequency domain) for two reasons. First, for dynamical 
simulations, this is the domain of interest. Second, the analy- 
sis of the causal limit of zero damping and high modal den- 
sity in the frequency domain can be subtle. On the other 
hand, in the time domain we can more easily obtain results 
for zero damping than with damping, as we will show. 

In the next section we formulate the problem for con- 
structing the time domain DtN map for a general linear elas- 
tic subsystem. The exact equations are derived for the case of 
zero damping. We then solve the equations of motion to 
derive the exact DtN map for the subsystem. The effects of 
small damping are then incorporated approximately. We use 
a modal representation similar to that used by Pierce6 and 
develop an approximate DtN map for the subsystem in the 
high modal density limit. We derive error bounds on the 
approximate DtN map based on the choice of parameters. 

2048   J. Acoust. Soc. Am. 104 (4), October 1998        0001-4966/98/104(4)/2048/6/$15.00        © 1998 Acoustical Society of America   2048 



Finally we compare the results of using an exact DtN map to 
those from an approximate DtN map in a dynamical simula- 
tion. The simulation is performed for the special case of a 
single attachment point subsystem whose components move 
unidirectionally. 

I. FORMULATION 

We consider a linear dynamical subsystem whose con- 
figuration is specified by N+M generalized coordinates, £,- 
with J'=1 N+M. These generalized coordinates may be 
thought of as being the generalized displacements of the 
components of the subsystem from their equilibrium posi- 
tions. This subsystem interacts with the outside world 
through the first N of the N+M generalized coordinates £ß 
with ß=l,...,N. Henceforth we shall refer to these general- 
ized degrees of freedom as the degrees of freedom of the 
attachment points. We denote the generalized forces that are 
applied to the system through the first N generalized coordi- 
nates by fy where y= 1,2,...,N. 

The equations of motion for the subsystem are: 

+ 

22, 
M" :,!H!'UC" -21 

'12 

'22, 

Kn    Kn\(& 

K- 21 K ■22 
(1) 

Here, & represents the generalized coordinates of the attach- 
ment points and £2 represents the generalized coordinates of 
the internal degrees of freedom. The K's represent the stiff- 
ness parameters coupling the attachment degrees of freedom 
or the internal degrees of freedom to one another. The K'S 

represent the stiffness parameters coupling the attachment 
degrees of freedom to the internal degrees of freedom. The 
M's represent mass elements, while the C's are damping 
coefficients. 

In the derivations that follow, we shall consider only the 
special case in which Cu = 0 and C12=C2i = 0. We shall 
also usually consider the case of zero damping, in which 
C22=0. We shall, however, allow for the situations in which 
Mn = 0 and/or M12=M21=0. The matrices M22, Kn, K22 

are all assumed to be positive definite. 
In order to distinguish between the various blocks that 

appear in the matrices in (1), we shall adopt a summation 
convention where repeated subscripts are summed through 
their range. Since we require different ranges to distinguish 
between attachment points and internal degrees of freedom, 
we adopt the convention 

a,ß,y,... = l,2,...,N, 

p,q,r,s,... = N+ l,...,N+M. 
(2) 

Thus Mn->Ma/3, M12->M„p, M22-»Mp9, etc. Using this 
convention (2) allows us to rewrite (1) as 

Maßlß + Maplp + Kaßt;ß+Kapt;p=fa (3) 

and 

"* BOSO"'" ^poSo ' "■pa'sa *"paSa     ^pa'sa- 

In Eq. (4) we see that the internal degrees of freedom are 
forced by the motions of the attachment points. Equations (3) 
and (4) are the equations of motion of the subsystem. We can 
now solve (4) for the unknown generalized coordinates, £p, 
and use the result in (3) to formulate a Dirichlet to Neumann 
Map or DtN.1 The DtN map can be written as 

f=F(U- (5) 

Here, F is the Dirichlet to Neumann map; the forces fa rep- 
resent the Neumann data and the displacements of the attach- 
ment points €a represent the Dirichlet data. Thus the DtN 
describes the forces exerted by the subsystem on its environ- 
ment in terms of the displacements of its attachment points. 
We note that in the case of linear systems, as are treated here, 
the Fourier transform of the time-domain DtN map (5) is 
directly proportional to the impedance of the subsystem. 

II. EXACT SOLUTION FOR THE INTERNAL DEGREES 
OF FREEDOM 

We now consider the special case of C22=0. On that 
basis, we obtain an exact solution of (4) for the generalized 
displacements of the internal degrees of freedom £p in terms 
of the displacements of the attachment points tjß. The solu- 
tion may be obtained in terms of a normal mode expansion 
using the eigenvectors of the matrix M22

1/2K22M2~2
1/2. For 

details of this derivation we refer the reader to Ref. 11. Here 
we need not compute M22

1/2 explicitly. We only need to note 
that M2? is the unique positive definite matrix that satisfies 
M22

2Mg=M22. 
The matrix M~J KBaM~}n is symmetric because K22 is 

symmetric. We assume that M     KpqM      is positive defi- 
nite; i.e., 

x^MT^KM- 

Since M~}aKnnM\ 

1/2 )x>0,    Vx^OeR M (6) 
1/2 . sp .ipqir* qr is symmetric and positive definite, it 

has M positive eigenvalues, (co(P))2, P=l,...,M, and M 
distinct orthonormal eigenvectors, y*, P=l,...,M. 

In what follows summation is implied on repeated sub- 
scripts, but superscripts are not summed unless explicitly 
specified. We solve Eq. (4) subject to the conditions £a(t) 
— 0,    ijp(t) = Q,   Vf=£0,    and   use    the   properties    of 
(M7„mK •sp Af~,/2) to get pq"A qr 

ft   M     A{Q) 

&(') = "      2   -4§ysin(a,<%-r)) Jo ß=l    CO™' 

(7) X{«paUT) + MpaUT)}dT. 

We note that the time integration starts at t=0 because the 
subsystem has no displacement history prior to this. In (7), 
we have denoted the outer product M~ my® yM~ m by A: 

A{p)=M-my{P)y{P)M-m. "ps pq     "q     "r    '   rs     • (8) 

A. Exact Dirichlet to Neumann map 

We now obtain an exact DtN map by substituting Eq. (7) 

'pp« '■pqtq (4)      into Eq. (3). This yields 
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fa—MaßSß + Kaßijß 

I d2\ fi  M    A{p) 

-[><ap + Map^jo2   -^sin(^)(f-r)) 

X{Msß£ß(T) + Ksßtß(T)}dT. (9) 

Various expressions for the exact DtN map may be con- 
structed by rearranging the terms of Eq. (9).11 It is, perhaps, 
most illustrative to conduct integration by parts on terms 
containing £ and simplify the result to write 

fa=[Maß-MaiMjMjßY£ß 

+ [Kaß~ KapK~s
l Ksß]^ß(t) 

+ 
r» M 

Jo 2 *>('W« sxnW\t-T))lß{r) dr. 

Here we have used the relation 

Kn~& W1?' 

(10) 

(11) 

In Eq. (10) we have introduced the modal mass tensor m^ß. 
We define the modal mass tensor to be 

m($=,   ,P\^4 (Map((o{p))2 -Kaq)\   Vp)      
P*p) a/?_(<o(/>))4      ap 

'Mrß{^PV 

\nqr       nqs 

X 
— K sß 

(12) 

This modal mass tensor is a generalization of the modal mass 
definition of Pierce6 and O'Hara and Cunniff.12 

B. Properties of the modal mass tensor 

The modal mass tensors have the property that their sum 
over all modes, P=l,...,M, yields the total mass of the 
subsystem.11 This may be written as 

M 

CJLMafi-MaiM7/Mjß]4+ 2 tWa%=MmSfK 

(13) 

Here £'a represents a unit displacement of the attachment 
points in the ith Cartesian direction and <5'; is the Kronecker 
delta function. Further, the modal mass tensors can also be 
shown to satisfy the relationship11 

M 

^{o>(p))2m(p)
ß=MapM-pq

xKqrM;s
XMsß 

-MapMpq
l Kqß- KapMpq

xMqß 

+ KapKpq Kqß- (14) 

C. The role of damping 

We now briefly reconsider Eq. (4) with C22^0. We shall 
assume, however, that C22 can be diagonalized by the eigen- 
vectors y. Thus, we write 

M;p
mCpqM^y™ = 2r,™^y™ 

(no sum on Q). (15) 

Here, r/(Q) is the fraction of critical damping of the Qth 
mode of the clamped subsystem. Assuming rfQ)< 1 leads to 
the following solution of (4): 

n  M   A{Q) 

€■—      S   -& «in <«<»</-r)) 

Xexp (- 77(ß)o.(ß)(r-T)){KpaUr) + MpJa(T)}dT. 

(16) 

Following the same steps as those leading to Eq. (10), gives 
an approximate DtN that includes the effects of small damp- 
ing on the internal degrees of freedom: 

fa=[Maß-MaiM7/MjßY£ß 

r,   M 

+ [Kaß-KaPK-psKsß\tß{t)+\o 2 <»(P)m(Pß 

Xsin (^p\t-T))e-"WJP)i'-T)£ß(T) dr.      (17) 

We emphasize here that (17) is exact for rfp)=0, but is only 
approximately valid for rfp)±0. We shall refer to results 
derived consistently from (17) as "exact" in the rest of the 
paper, with the understanding that they are exact for rfP) 

= 0. 

III. APPROXIMATE DTN MAP AND ERROR BOUNDS 

We begin this section by introducing the modal mass 
function: 

M 

m(o>)=2 m(p)H(o)-a(p)). (18) 

In (18), H(o) is the Heaviside unit step function. This defi- 
nition is similar although not identical to that of Pierce.6 We 
note that the function m(&>) is discontinuous. Therefore its 
derivatives are to be interpreted as delta functions. We also 
introduce a continuous damping function 7](a>) such that 
rj(a>(Q))= v(Q\ and that 

min r)((o)—   min     rf®. 
at Q=\ M 

(19) 

When the subsystem has many internal degrees of freedom 
and therefore many modes, we expect that the modal mass 
function m(&>) is well approximated by a smooth function 
m(o>). We now show that the error in f(f) resulting from 
approximating the modal mass function is bounded for all 
time, subject to some conditions. We do this by rewriting our 
discrete DtN in (17) using (18) and (19): 

fa=\.Maß-MaiM^Mjp^ß 

+[Kaß-KapK;s'Ksß^ß(t)+j'J\    d(o 

Xsin «(f-iOe-'tf'-^T) dw dr. (20) 

"t f»    dmaß{oi) 
ft) 
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Here we emphasize that Eq. (20) is exact for the case of zero 
damping, and no "fuzzy" approximations have as yet been 
made. That (20) is indeed exact can be easily verified by 
substituting (18) into (20) and integrating the resulting sum 
of delta functions. 

We now consider approximating m(co) by m(w). Thus 
we introduce the difference function me(v) with v=a/e 
such that 

m(cü) = m(ü)) + eme 
O) 

e<\. (21) 

Here, eme(o)/e) is a small but rapidly varying function 
which represents the error in approximating m(o)) by m(w). 
The fact that it is rapidly varying is accounted for explicitly 
through its dependence on the argument {ale). The nondi- 
mensional parameter e is a measure of the modal spacing. 
We now substitute Eq. (21) into (20) to get 

/<*=[Maß- MaiM^Mjß]'iß 

, ft f»    dmaB(a) 
+ [K.ß-KapK2K,tfltt)+IJo»—%r- 

Xsin tj(t-T)e-^'-T)i^ß(T) da dr+error a(t). 

(22) 

The error term in Eq. (22) is given by 

errorl 
fi f°°   dme 

(0=        »-TTM JoJo     dv 
sin a(t— r) 

v=a>/e 

Xe-*'-T)'g(T) da dr. (23) 

Here, maß(y) is the derivative with respect to its argument. 
We now show that the error is bounded. We integrate (23) by 
parts once in time and twice in frequency to obtain: 

error(f) = e" /:/>-? (t—T)2 cos a(t-r) 

Xe-*<-T)g"(T)dadT. (24) 

Here mi,(v) is the integral of me(i') with respect to its 
argument. In deriving Eq. (24) the following assumptions 
were made regarding the choice of m(<o): 

M 

m(0) = 0,    m(°o)=]£ m- 

mi,(0) = 0,    C^ f"||m!.,(y)|| dv<™. 
Jo 

In Eq. (24) we observe 

Ml        Mil 
ml, — }\\da=eC«x>, 

Jo |]       \ c/ll 

|cos «(f-r)|=£l, 

(25) 

(26) 

(f-T)3«-*'-7^!  
\ ^min 

,-3 

Substituting (26) into (24) yields 

l|error(f)|| 

^27e-3C\g"(t)\ mm,     T)*0,r)<iyt, 

77=0,Vf. 
(27) 

Equation (27) shows that the error incurred in replacing 
m(w) by a smooth m(a) is bounded for all time in the pres- 
ence of damping. When there is no damping, the error is 
small for simulation time less than 0(l/e). 

IV. EXAMPLE APPLICATION OF DTNs 

In this section we illustrate the application of our formu- 
lation and DtNs to a particular problem. We consider an 
elastic rod (main structure) that we model discretely using 
ten elastic finite elements. At one end of the rod we prescribe 
a unit step displacement at t=0. At the other end of the rod 
we attach a dynamical subsystem whose components are al- 
lowed unidirectional motion only. We represent the effect of 
the subsystem on the dynamics of the elastic rod through a 
DtN map. We use this special case to compare the results of 
the exact DtN map to an approximate (fuzzy) DtN map. The 
basis of our comparison is the force f(f) that the substructure 
exerts on the rod in each case. 

The exact DtN for such a subsystem may be derived 
from Eq. (20) to be 

/o(0 = *o£o(0- f'f 
Jo Jc 

' f°°   .dm(a) 

o da 
sin a(t— T) 

xr^'C-^TlrforfT. (28) 

Here £0 is the displacement of the attachment point between 
the rod and the subsystem (equipment), fQ is the force ex- 
erted by the subsystem on the elastic rod, and K0 is the 
high-frequency attachment point stiffness. For details of the 
formulation and derivation of Eq. (28) we refer the reader to 
Ref. 13. We consider exact and approximate modal mass 
functions of the form 

1000 

FIG. 1. Force at the attachment point plotted as a function of time. The full 
time scale is one unit. The parameters of the rod and subsystem are such that 
fl^wo^lO. 10 internal d.o.f. subsystem. 
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FIG. 2. The 100 internal d.o.f subsystem. 

M 

m(»)=2) m(p)tf(<«)-<ü(p)), 
p=\ 

(29) 

m((o) — MT erf | 
V2il 

Here erf (z) is the error function as defined in Ref. 14, MT is 
the total mass of the subsystem, and ft is a characteristic 
frequency scale of the subsystem. The frequencies a>(P) are 
chosen randomly between 0 and 3Xft. The modal masses 
m(/>) are chosen to approximate the continuous distribution 
m(w) in (29), thus satisfying the assumption (21). 

We note further that the modal mass functions m(<o) 

and m(w) satisfy 13 

M 

m(0) = 0,    m(oo) = Mr=2 m (P) 
p=\ 

(30) 

(dm(w) dm f   ,.    ,   , 
— 3=0, &>2 — d(o=K0. do) Jo A~ 

From condition (30) we obtain ft = y/K0 IMT in the approxi- 
mate modal mass function. We use the modal mass functions 
from (29) in the DtN (28) to obtain our exact and approxi- 
mate (fuzzy) DtN as13 

»lOOnasa.crf" — 
"lOOnss. 01. damp* 0 

0     SO    100   130   200   250   300   350   400   450   S00 

FIG. 4. The 100 internal d.o.f with 1% damping. 

Jo P=l 

Xsin (^r)(t-T))e-^'-^Q(T) dr,       (31) 

fo(t)=K0£Q(t)-MTCl* f'[3-n2(r-r)2] 
Jo 

XO-Tie-l'-WifäTidT. (32) 

We note that other choices of m(a>) lead to different results. 

A. Implementation and numerical results 

We analyze the elastic rod described above using finite 
elements. The rod is discretized and represented by ten finite 
elements. The DtN boundary condition given by Eq. (31) or 
(32) is applied at the end of the rod at x=L. We apply a unit 
Heaviside step in displacement at the end x=0. We integrate 
the equations of motion explicitly to update the displace- 
ments in the rod and the force at the attachment point. The 
force at the attachment point at any time t depends on the 
value of £o at all earlier times. Therefore, we maintain a 
time history of the displacement of the node at x=L and use 
this in (32) to evaluate the force /0 at each time step. This 
allows us to compute the displacement of the rod at the next 
time step, and so on. Below we compare the forces between 
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FIG. 3. The 500 internal d.o.f subsystem. 
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FIG. 6. The 100 internal d.o.f with 10% damping. 

the rod and the equipment predicted by the exact DtN and 
the approximate DtN for various modal densities and modal 
damping. 

The properties of the rod and the subsystem are chosen 
so that O^wo^lO, where <o0 is the lowest natural fre- 
quency of the rod. Further, the mass of the rod is approxi- 
mately the same as the mass of the attachment. The rod has 
high («10%) damping, which is the same throughout the 
simulations, and tends to make the travel time slightly faster 
than would be indicated by <o0. The equipment has either 
zero dissipation or a value as stated in the figure captions. 
The full time range for the simulations is one time unit. 

In Figs. 1-3 we see the effect of the number of internal 
degrees of freedom M (modes) on the exact and approximate 
DtNs (31) and (32), respectively. The number of modes is 
related inversely to the small parameter e introduced in Eq. 
(21). Specifically, e=0(l/M). Thus, as M increases, we 
expect the results from the approximate DtN (32) to better 
approximate the exact DtN results. From these figures we 
can see that the approximate DtN map in Eq. (32) indeed 
provides a more accurate representation of the subsystem as 
the number of internal degrees of freedom increase from 10 
to 500. 

In Figs. 4-6 we study the effect of subsystem damping 
on the validity of the DtN approximation. Based on the re- 
sults from Sec. IV, we should expect that increasing damping 
(with M fixed) would control the long time error in the simu- 
lations. In Figs. 4-6, we see precisely this behavior as rj 
increases from 1% to 10% of critical damping. We note that 
in all these figures the approximate DtN has zero added 
damping. We conjecture that better agreement in the "over 
shoot" region (near t = 100) would be realized by using an 
approximate DtN that included damping. 

V. CONCLUSIONS 

In Sec. HI A we have shown that a general dynamical 
subsystem can be represented by an exact DtN map. The 
map can be used to replace the subsystem in a dynamical 
simulation. In Sec. IV we provided approximate representa- 
tions for the dynamical subsystem. We showed that the error 
can be bounded. In the final section we studied an example 
problem and performed a dynamical simulation using both 

our exact and approximate DtNs. The simulation demon- 
strates the validity of our results when the number of modes 
is high. It also shows that the model improves with the pres- 
ence of a small amount of damping. 

The approximate structure model presented here re- 
quires knowledge of "the limiting structure." That is, we 
need to know 

lim m((ü) = m(a>). 
e-0 

(33) 

Equation (33) is very restrictive in terms of developing ap- 
proximations for real structures. In a future contribution,15 

we shall show that a given structure can be accurately mod- 
eled without full knowledge of the limit in (33). That is, we 
can construct an m(ö>) with knowledge of only a few rela- 
tively simple parameters that describe the system. 
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ABSTRACT 
We consider modeling the presence of a substruc- 

ture in a dynamical simulation in terms of the force 
the substructure exerts on the main structure of in- 
terest. The reaction force is given in terms of the 
displacement of the attachment points. We call the 
map between the displacement of the attachment 
points and the force at the attachment a Dirichlet 
to Neumann, or DtN, map. We use a regular per- 
turbation expansion to derive an approximate DtN 
for the case when the substructure exhibits weakly 
nonlinear behavior. The representation is accurate 
to 0(e2t2) + 0(t2/N2), where e is a measure of the 
strength of the nonlinearity, N is the number of 
modes of the subsystem and t is the simulation time. 
We note that the representation is particularly suited 
to the situation when e = OiN-1). 

INTRODUCTION 

Calculations of the mechanical response of complex 
structures can often be simplified by first determin- 
ing the response characteristics of the internal com- 
ponents. Barbone (1995, henceforth (I)) proposed 
doing this in terms of a Dirichlet to Neumann map 
(DtN), which converted displacements of equipment 
attachment points to forces. An exact DtN was de- 
rived for a general subsystem consisting of masses 
and linear springs, and it was shown that in several 
cases of interest it is possible to obtain much simpler, 
approximate DtN's. In particular, when the density 

of eigenstates of the internal subsystem is very 
high, the application of "fuzzy structures" techniques 
(Pierce, Sparrow & Rüssel, 1993; Pierce, 1995) pro- 
duces an approximation which involves a few easily 
estimated physical parameters. In this paper, we dis- 
cuss the extension of the results in (I) to the case of 
a subsystem with weakly nonlinear internal interac- 
tions. We first derive an approximate DtN for an ar- 
bitrary but weak nonlinearity, and discuss the result- 
ing error of the approximation. We then describe two 
specific models of nonlinearities. Finally, we discuss 
the derivation of higher-order approximate DtN's for 
weakly nonlinear subsystems, and demonstrate the 
validity of our first-order result through a numerical 
example. 

FIRST-ORDER DTN FOR WEAK NONLINEAR- 
ITY As in (I) we shall assume that the subsystem is 
attached to the main structure at a single point and 
that all motion is purely unidirectional. In this case, 
the displacements of the attachment point and the N 
subsystem components can be described by the scalar 
xo(t) and the AT-dimensional vector x(t). The force 
exerted on the equipment by the structure is denoted 
/o(t). The goal in deriving a DtN for the subsystem is 
to obtain an expression for fo(t) which depends only 
on xo(t). 

The movement of the equipment and the resulting 
force on the main structure are assumed to obey the 
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following equations: 

Mx(t) + Kx(t) + ev[x{t)]   =   -Kx0(t)    (1) 

K-(x(t)-px0(t))    =   f0(t), (2) 

Here the N x N positive definite matrix M and the 
N x N symmetric matrix K describe the masses 
and spring constants of the subsystem, K is an N- 
dimensional vector of coupling spring constants, and 
p is an iV-dimensional vector with each component 
equal to unity, which represents uniform rigid trans- 
lation of the subsystem. In (l)-(2), XQ is the dis- 
placement of the attachment point, x is the vector of 
displacements of subsystem internal degrees of free- 
dom, and /o is the force exerted on the subsystem 
by the main structure. We assume e«l and take 
v to be a given nonlinear function of x. For e = 0, 
equations (1) and (2) reduce to the equations used in 
(I)- 

In order to obtain a relation involving f0(t) and 
xo{t) only, equation (1) must be solved for x(t), 
treating xo(t) as arbitrary. Though there are many 
advanced asymptotic techniques to treat equations 
like (1), they require specific forms of excitation (c.f. 
Nayfeh, 1981.) To treat an arbitrary excitation, how- 
ever, the best procedure is to employ a straightfor- 
ward regular perturbation expansion. Thus we as- 
sume that x(t) can be expanded in a regular pertur- 
bation series: 

x(t) = x(°\t) + ex^(t) + t2x<-2\t) + 0(e3).    (3) 

Therefore, 

fo(t)    =   k0x0(t) (4) 

+   K • (as<°> (t) + ex^ (t) + eV2> (t) + 0(e3)) . 

Here, ko = -p-n = p-Kp. The zeroth-order solution 
of (1) is that obtained in (I) for the linear case: 

N 

X (0) (t)  =  -f M-1'2 ££<B>fe<B: 
J-°° n=l 

^■M-^K 

x — sinwn(t — T)XQ(T)(1T. (5) 

The mode shapes and natural frequencies are defined 
by the equation 

The first-order equation given by (1) and (3) is 

MxW(t) + KxW{t) = -v[xM(t)] = -v{t).    (7) 

This can be solved exactly in terms of a;(0) (t). Letting 
xW(t) = M~1/2y(t) in equation (7) yields 

y(t) + M-ll2KM-x'2y{t) = -M-^2v(t).    (8) 

Since M~X'2KM~X^2 is symmetric and positive def- 
inite, we can write 

TV 

y(t) = 1£&)zn(t). (9) 
n=l 

M-^KM-1'2^^^^. (6) 

Substituting (9) into (8) and using the orthonormal- 
ity of the eigenvectors yields 

■zn + u2
nzn{t) = -£<"> • M-l'2v{t).        (10) 

The above scalar equation is easily solved using a 
Green's function gn(t) which satisfies 

9n(t)+u2
ngn(t)    =   -6(t) (11) 

gn(t)    =   0    t<0. (12) 

The solution gn(t) = sinu;ni gives 

rt       -I 

zn(t) = - /     — sinw„(i - r)£(n) • M^V^T. 
J-oo wn 

(13) 
We now subsitute (13) into (9) and use the definitions 
of y(t) and v(t) to obtain the following solution to (7): 

xW(t)    =    -M-1'2^") f   -!sinu,„(*-T) 
n=l J-°° Wn 

x£<n> • M-V2v[xW (T)]dT. (14) 

The first-order approximation of the DtN map for 
the weakly nonlinear system (l)-(2) can now be writ- 
ten as 

fo(t) = k0x0(t) (15) 

-K ■ /^ M-V2 YLi *(n)£ **M* - r) 

x [$<"> • M"1/2«] xQ{r)dT 

-en ■ Jt^ M-1/2 Eti *(n)£ sin<On(* - r) 

x {£<"> • M-^
2
V[X^(T)]^ dr + 0(e2i2), 

where x^(t) is given by (5). 
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The parameter which controls the error in (15) is e. 
In our derivation of the general first-order DtN (15), 
we gave no special treatment to the secular terms in 
x(°) and x^. Therefore, we expect that the 0(e2) 
error terms can experience unbounded growth pro- 
portional to t2. (c.f. Nayfeh 1981.) Therefore, we 
have denoted the error in equation (15) as 0(e2£2). 
Thus, we can expect (15) to be an accurate approxi- 
mation to the exact nonlinear DtN when t < e_1 and 
e«l. 

TWO NONLINEAR FUNCTIONS WITH FUZZY- 
STRUCTURE APPROXIMATIONS 

We now discuss two specific forms of the nonlinear 
function v[x] in (1). In each case, we first describe 
v[x] and the resulting DtN (15), and then make a 
high modal density (fuzzy) approximation. Following 
these two examples, we discuss the errors which can 
be expected from our fuzzy-structure approximations 
and compare these with the error due to our weakly 
nonlinear treatment. 

Unidirectional Quadratic Nonlinearity 
Here, as a simple example, we assume that 

N 2 
v[x] = Kj2[t{n)-M1/2x\   . (16) 

n=l 

We now substitute (16) into (15), to obtain 

ft      N 

. ad) K • X - I     V — sinwB(t - T)K ■ M-1'2^") 
J~<*> n=l Un 

X£(») . M-^K £ [C(0 • M1'2««» (r)]2 dr.   (17) 
i=i 

By using (5), we get the following expression for the 
term in square brackets in (17): 

^•M1/2
I(°'(r)= (18) 

_£« . M-l'2K f   — sinU,(T - T')X0{r')dr' 
J-oo ul 

We now simplify (17) using the "modal mass" 
(O'Hara & Cunniff, 1963; see also Pierce, 1995 and 
(I)), defined as 

mn=(p-M1/2^"))2. (19) 

It can be shown that 

K„M-l/2^(n) = _w2>A?i-) (20) 

hence (17) becomes 

rt    N 

K-X^(t) = -            J2m"u3nsinU}n(t-T)    (21) 
J—oo i 

N 
-°°n=l 

x V^mju;2    /     sinwi(T - r')xo(r')dr' 
1=1 U—oo 

Similary, one has 

N 

dr. 

K -X (0) (0 = - /     ^2 m„o£ sinwn(t - T)x0(T)dT. 
•1-°° n=l 

(22) 
Substituting the preceding two expressions into (4) 
gives a DtN for the quadratically nonlinear subsystem 
under consideration which has an error of order e2£2. 

High Modal Density. We now prepare to make the 
approximation of assuming that the modes are closely 
spaced in frequency. In this case, the modal mass 
can be represented by a function of frequency, m(w), 
which is defined by (Cherukuri 1996, Cherukuri & 
Barbone 1996): 

dm(u) 
du> 

N 

= Ylmn5(U;~U}n)- (23) 
71=1 

We can now exactly replace the sums over N modes 
in (21) and (22) by integrals over all frequencies. The 
0(e) DtN for (l)-(2) with the nonlinear function (16) 
then becomes 

/o(t) = *oa:o(t) (24) 

" IL JT ^"3 sin«"(* - T)** *o(r)dr 
-*SLeoJ?i!&^>ä*u,{t-T)du, 

x Jo00 ^"'2 [/-'oo sin"'(r - r')x0(T')dr']2 

xduj'dT + 0(eH2). 

We note that when the modal density is high, the 
exact discontinuous mj£' (23) can be replaced with 
a smooth approximation. The error so introduced in 
fo(t) is discussed below. 

Quartic Potential Energy 
Here we make the physically reasonable assumption 

that v[x] is the gradient of a quartic potential energy 
function. Specifically, we let 

vp[x] = 
d 

9XP ■ trf 14 
2J    j^ijkiXiXjXkXi, (25) 
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where T is a constant, rank 4 tensor which is sym- 
metric with respect to all pairs of indices. Applying 
the above definition, 

N 
vp[x]=    Z2   TpjklXjXkXi. 

j,k,l=l 

(26) 

We now assume that T can be expressed in terms of 
symmetric N x N stiffness matrices K as follows: 

Tij-fci = 3 [KijKu + KuKkj + KikKfl].       (27) 

Using (27), we obtain 

rt N 

xW(t) = - f    M-^f^^ — smunit-r) 
7-oo n=1 Wn 

X£(») . M'^Kx^ir) (XW(T) ■ üfx(°)(T)) dr (28) 

Writing a;^0) as 

N 

x^(t) = Y^ai(t)M-1^ (») (29) 
i=i 

and noting that M 1'2 is symmetric allows us to 
write (28) as 

(i) (*)    =    -/*   M-^T^— sinWn(t-r) 

x|fl„(T)W»f;a?(T)a;?ldr. (30) 

We can now explicitly write down the order e term 
in the DtN for the cubic nonlinearity given by (26)- 
(27). Substituting the full expression for an(t) from 
(5) and using the modal mass m„ gives us 

K'«(1)(*) =/looEn=1^>nSinW„(t-r)  (31) 
X S-oo Sin Wn(T _ T')zo(r')<fr' 

x Ej=i w?m/ (/loo sinwj(T - r')a;o(r')dr'J  dr. 

High Modal Density. We now assume that the 
modal density of the subsystem under consideration 
is very high, and let the modal mass be a continuous 
function of frequency m(w), as was done above. In 
this case, the 0(e2) DtN corresponding to (31) be- 
comes 

" /I« /o°° dJ^"Z sin«(* - r)du x0(r)dr 

^/looC^^sin^-r) 
x /loo smw(r - T')dw x0(r')dr' 

x/o 
00    ,4 dm(o/) 

W dw' 

x (/^ sinw'(r - r')a;o(r')dr')  dw» dr. 

Error Due To Fuzzy-Structure Approximation 
The DtN's (24) and (32) involve approximations 

based on two explicit assumptions: weak nonlinear- 
ity and high modal density. The function m(u;) in- 
troduced in equation (23) can be chosen to represent 
the subsystem exactly. Frequently, however, an ap- 
proximation to m(tjj), say m(u>), will be used for any 
of various reasons. Such an approximation naturally 
leads to error in the DtN. Cherukuri and Barbone 
(1996) point out that m(w) should be chosen so that 
for n = 0,1,2: 

f°°   ndfn .        f°°   ndm _, 
/    wn—dw= /    wn—du. (33) 

Jo        du J0 dw 

In this case, the error due to the approximation of 
m{cj) with fh(u>) is 0(t2/N2) (Cherukuri & Barbone, 
1996). Here, N is the number of components in the 
internal subsystem. 

Both the weakly nonlinear and fuzzy-structure ap- 
proximations cause the error in fo(t) to grow as sim- 
ulation times advance. If there is significant dissi- 
pation in the system, however, we can expect that 
the long time response will vanish before significant 
error can accumulate. In particular, if the dissipa- 
tion time scale is 0(T), then we conjecture that for 
m(w) = m(w) (as defined in (33)) the DtN's (24) and 
(32) will be valid for all time when r = o(e-1) and 
T = o{N). 

HIGHER-ORDER DTN's 
We now describe a method for obtaining approxi- 

mate DtN's for the weakly nonlinear system (l)-(2) 
which are accurate to second-order or higher in e. We 
concentrate on solving (1), since it is straightforward 
to obtain the 0(en) DtN from (5) once aj(n)(i) has 
been found. 

Assuming an arbitrary function v[x], we expand 
about x(°\t): 

fo(t) = k0x0(t) (32) v[x(°) + ex (i) + e*x (2) + ...   = (34) 
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0.00 20.00 40.00 60.00 

Figure 1: Comparison of attachment point forces 
given by the linear DtN (/^), the first-order weakly 
nonlinear DtN (/^), and the fully nonlinear numer- 
ical integration (_f(num)). The forces are plotted as 
functions of simulation time for the case N = 10, 
e = 0.1, described in the text. 

v0 + (exW + e2xW + ...) v'0 

mexU+e2xM + ...)2v',; + ..., 

where vo = v[x(°\t)] and ' = d/dx. From (1), it can 
be seen that the 0(em_1) terms on the r.h.s. of (34) 
give an equation for x^-m\t). We write this as 

Mä(m' + KxW = ^-^(V,*)«^'0'],       (35) 

where £ is a scalar linear differential operator on v[x] 
which depends on {x^ • V, x(2) • V,..., a;(m_1) • V}. 
To solve (35), we can use an expansion in the eigen- 
vectors ^n' and then use Green's functions to find 
the time-dependent coefficients, as was done above. 
This yields the general solution for x(m)(t), given 
{ajW,»«1),...,^"-1)}: 

X(m)(t) = _ j^ EAT=i J_ sinWn(i _ T)      (36) 

x{tim-l\V,T)v[xW{T))}dT. 

To obtain an explicit solution for x^m\t), and 
hence an mth-order approximate DtN, one must cal- 
culate {£(°\ £(!),..., £(m"1)}. The general solution 

obtained above for x^\t) shows that C^> = 1. For 
concreteness, we now write C^ for m = 1,2,3: 

£<X>(V,*)    =   asW(*)-V (37) 

£&(V,t)   =   xW(t)-V + ±(xW(t)-Vy     (38) 

£<3>(V,t)   =   x(3)(t)-V+(xW(*)-v) (39) 

x(a;(
2)(t).v) + i(a:(

1)W.v)3. 

A NUMERICAL EXAMPLE 
To demonstrate the usefulness of our first-order 

DtN (15), we now compute fo(t) for a given weakly 
nonlinear subsystem. We will compare the result 
given by (15) to both the purely linear result (e = 0) 
and to the fully nonlinear result, which we obtain by 
direct numerical integration. 

We choose the quadratic nonlinearity (16), hence 
the first-order DtN is given by (21)-(22) and (4). We 
now must select a forcing function xo(t) and the fol- 
lowing parameters: N, {u}n,mn : n = 1,2,...N}, 
and e. Once we do this, the approximate DtN pro- 
vides zeroth- and first-order results for fo(t), denoted 
/o (t) and /o (t). To obtain the fully nonlinear so- 
lution numerically, we integrate the equations 

N 

z„(t)+ujlzn(t) + eu2
ny/m^^z2{t) = -w^i0(i) 

(40) 
J=I 

where n = 1,2,... N, and thus obtain 

N 

fo{t) x tinum\t) = k0x0(t) + X>?>/mr*l(*). (41) 
i=i 

We note the fact that fco = X)n=i mnwn- 
For this example, we let N = 10 and e = 0.1. We 

chose a realization characterized by modal masses 
mn = 0.1(1 + r„), n = 1,2,...,10. Similarly, we 
chose nominally evenly spaced frequencies between 0 
and 1: w„ = 0.1 n(l + r'n), n = 1,2,..., 10. Here, r„ 
and r'n are random numbers drawn from a uniform 
distribution between —0.125 and 0.125. The results, 
obtained using the forcing function xo(t) = H(t — 1), 
where H(t) is the Heaviside step function, are shown 
in Fig.l. Comparing /(0)(*) and /(num)(f), it can 
be seen that a small amount of nonlinearity signif- 
icantly changes the response of the system. How- 
ever, f^\t), given by our first-order DtN, captures 
a large part of the nonlinear behavior, especially at 
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short times. In particular, it accurately predicts the 
first large positive and negative peaks in the force at 
the attachment point. Even for larger values of e, 
our first-order DtN has been found to give short-time 
results which compare favorably with the fully non- 
linear case. Thus we have demonstrated the applica- 
bility of the DtN concept to structures which exhibit 
nonlinearity. We note that for the special classes of 
nonlinearities treated above, the substructure is en- 
tirely described by the function m(w). 

for structures with fuzzy internals," ASME Trans- 
actions, Paper No. 93-WA/NCA-17 (ASME Winter 
Annual Meeting, New Orleans), November 1993. 

ACKNOWLEDGMENTS 
The authors gratefully acknowledge the financial 

support of the Office of Naval Research. 

REFERENCES 
Barbone, Paul E., 1995, "Equipment representa- 

tions for shock calculations: time domain Dirichlet 
to Neumann maps," In Proceedings of the ASME 
Symposium on Acoustics of Submerged Structures 
and Transduction Systems, ASME Press, New York, 
September 17-21, 1995. 

Cherukuri, A., 1996, "Time domain Dirichlet to 
Neumann maps for representing complex dynamical 
subsystems," M.Sc. thesis, Boston University Depart- 
ment of Aerospace & Mechanical Engineering, 1996. 

Cherukuri, A. and Barbone, Paul E., 1996, "High 
modal density approximations for equipment in the 
time domain," Boston University Department of 
Aerospace & Mechanical Engineering Report, No. 
AM-95-012, July, 1996. 

Nayfeh, A.H., 1981, Introduction to Perturbation 
Techniques, John Wiley & Sons. 

O'Hara, G.J. and Cunniff P.F., 1963, "Elements 
of normal mode theory," Naval Research Laboratory 
Report, 6002. 

Pierce, A.D., 1995, "Resonant-frequency distri- 
bution of internal mass inferred from mechanical 
impedance matrices, with application to fuzzy struc- 
ture theory," In Proceedings of the ASME Symposium 
on Acoustics of Submerged Structures and Transduc- 
tion Systems, ASME Press, New York, September 17- 
21, 1995. 

Pierce, A.D., Sparrow, V.W., and Rüssel D.A., 
1993, "Fundamental structural-acoustic idealizations 

76 



Paul E. Barbone Final Report 79 

C.5    Time Domain Dirichlet to Neumann Maps for Representing Complex 
Dynamical Subsystems 

Aravind Cherukuri and Paul E. Barbone, "Time Domain Dirichlet to Neumann Maps for Rep- 
resenting Complex Dynamical Subsystems," BU Dept. Aerospace &: Mechanical Engineering 
Technical Report No. AM-96-018, 1996. 



TIME DOMAIN DIRICHLET TO NEUMANN 
MAPS FOR REPRESENTING 

COMPLEX DYNAMICAL SUBSYSTEMS 

Aravind Cherukuri 
Paul E. Barbone 

Technical Report No. AM-96-018 

May 1996 



Acknowledgments 

The author would like to thank Paul E. Barbone for his guidance on this work. The author 

would also like to thank Allan D. Pierce, Isaac Harari, Dan Givoli, Daniel Goldman, Raymond 

Nagem, Josh Montgomery, Brian Rush and Keerthi Sadananda for many helpful discussions and 

ideas. This work was supported by the Office of Naval Research. 



TIME DOMAIN DIRICHLET TO NEUMANN MAPS FOR REPRESENTING 

COMPLEX DYNAMICAL SUBSYSTEMS 

ARAVIND CHERUKURI 

Boston University, College of Engineering, 1996 

Major Professor: Paul E. Barbone Assistant Professor of: Mechanical Engineering 

Abstract 

The presence of complex subsystems can dramatically affect the dynamics of the main structure 

to which they are attached. Exactly modeling these subsystems, however, is often impossible. 

Here we propose replacing the substructure (say a piece of equipment) in a simulation by an 

equivalent set of forces which react back on the main structure. These forces are given as 

time convolutions of the displacements at the equipment attachment points. The convolution 

integral, which represents a time domain DtN (Dirichlet-to-Neumann) map, is approximated 

in the high modal density limit with determined error bounds. Bounding the error serves to 

determine those properties of the dynamical subsystem that must be accurately reproduced by 

approximate models. We propose a hierarchy of equipment approximations based on this error 

analysis. We then analyze a special type of subsystem that interacts with the outside world 

through a single degree of freedom. We propose implementation schemes of approximate DtN 

maps for such subsystems based on the natural frequency scales of the subsystem and its known 

resonant frequencies. Finally our approximate DtN's are validated numerically in finite element 

simulations. 
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Chapter 1 

Introduction 



Analysis of problems involving simulations of complex dynamical subsystems often pose diffi- 

culties. Exact representations of complex dynamical subsystems are hard to formulate for two 

main reasons. First, exact representations are computationally expensive and require a large 

amount of man power to generate. Second, it is often impossible to determine all the relevant 

properties and natural modes of vibration of a complex dynamical subsystem. 

Here we address two important goals that make simulation of complex dynamical subsystems 

possible. These are: 

• To find computationally efficient representations of complex dynamical subsystems. 

• To determine the relevant information for accurately representing a complex subsystem. 

We formulate accurate yet computationally efficient representations for general dynamical sub- 

systems by addressing these issues. 

Approximate representations of dynamical subsystems (equipment) have two important ad- 

vantages over exact models or representations. First, the approximate representations can pro- 

vide sufficient accuracy while reducing computational costs. Second, approximate representa- 

tions require relatively little effort and information to formulate. 

Dynamical simulations of field problems defined on a large or infinite domain can often be 

simplified by replacing a portion of the domain by a Dirichlet to Neumann map [4]. In this 

thesis we utilize the concept of a Dirichlet to Neumann map to represent a complex dynamical 

subsystem. Thus we propose representing a complex dynamical subsystem in a simulation by 

an equivalent set of forces acting through the attachment degrees of freedom. The set of forces 

is given by a DtN map that may be expressed as: 

f(t) = F(fl. (1.1) 



Here F is the Dirichlet to Neumann map. It takes the time history of displacements of the 

attachment degrees of freedom, £ , to the current forces f(t). In the context of this prob- 

lem Dirichlet data refers to displacements and Neumann data refers to forces. Once the DtN 

map characterizing a given subsystem is known, its effect on the main structure is completely 

determined. Thus, we can replace the subsystem by its DtN map in a dynamical simulation. 

In this setting, the DtN map is related to the time domain impedance operator of the subsys- 

tem. The idea of breaking a structure up into smaller components and analyzing each component 

separately is, of course, central in all substructuring approaches ([9], [10] and [11]). In existing 

substructuring strategies, some form of a truncated modal sum is used to represent each subsys- 

tem (c.f. Craig and Bampton (1968) [10] and papers referencing them). One exception is that 

of Hale and Meirovitch (1980) [11] who consider any admissible functions within a variational 

method to represent a subsystem. 

Here we formulate an approximate DtN map for a general dynamic subsystem by replacing 

the modal sum with a modal integral. We determine the information that is necessary to 

formulate an approximate DtN map. Further, we compute the error made in approximating the 

exact DtN map of a general dynamic subsystem. We then bound the error in the approximation 

by imposing conditions on the choice of parameters used to represent the subsystem. Finally we 

show implementation methods for our approximate DtN maps and validate them in numerical 

simulations. 

In chapter 2 we formulate the problem that allows us to construct the exact time domain 

Dirichlet to Neumann map for a general dynamical subsystem. We develop and introduce the 

notation used to describe a general dynamical subsystem. Following the work of Pierce [2], 

we impose conditions of translational invariance on the quadratic potential energy function (of 



generalized displacements) of the subsystem. In addition we apply the condition of rotational 

invariance of the potential energy quadratic for small displacements. Thus we derive important 

physical properties of the subsystem that manifest themselves in the structure of the symmetric 

positive semidefinite stiffness matrix K of the dynamical subsystem. 

In chapter 3 we solve the equations of motion of the subsystem to obtain the generalized 

displacements of the internal degrees of freedom in terms of the generalized displacements of the 

attachment degrees of freedom. We write this solution as a decomposition into normal modes. 

We then use this solution to construct the exact DtN map of the dynamical subsystem. We 

simplify the exact DtN map of the subsystem by introducing a generalization of the modal mass 

tensor (Cunniff and O'Hara [3], Pierce [2]). We also introduce a modal stiffness tensor. We 

derive properties of the modal mass and the modal stiffness of the subsystem using the results 

of translational invariance from chapter 2. 

In chapter 4 we use the properties of the modal mass and the modal stiffness of the dynamical 

subsystem to develop approximate DtN maps for the subsystem. We recognize the system pa- 

rameters that are needed to approximate a dynamical subsystem. We derive strict error bounds 

for the approximate DtN's both in the presence and in the absence of small subsystem damping. 

We emphasize that these are strict error bounds, rather than asymptotic error estimates. We 

show that the error is small when the number of modes in the subsystem is high. We then 

discuss three different levels at which one may approximate the modal mass of a subsystem and 

the physical implications of these.approximations. 

In chapter 5 we discuss methods of efficiently implementing our approximate DtN's in nu- 

merical simulations. For this purpose we consider the special case of a single attachment point 

subsystem whose components move unidirectionally. We derive the exact DtN map of this sub- 



system based on the results of the previous chapters. In this discussion we use the approximate 

DtN for this subsystem proposed by Barbone [5]. We address the problem of implementing these 

DtN's in numerical simulations. We develop implementation methods for these DtN's for the 

cases when the natural frequencies of the subsystem are small compared to the time scales of 

the excitations and when a few resonant modes of the subsystem are known. 

In chapter 6 present a numerical simulation of a problem utilizing the results of the previous 

chapters. We discuss the problem and the method by which the problem is modeled. We 

show the time marching scheme used for analyzing the dynamics of the super structure and the 

subsystem in the numerical code. Finally we provide two sets of results to validate the DtN's 

developed in the previous chapters. One set of results shows the effects of the number of internal 

degrees of freedom (modes) of the subsystem on the errors in the approximations. The other 

set of results show the dependence of the error in approximating the exact DtN on the amount 

of subsystem damping. 



Chapter 2 

Problem Formulation 



In this chapter we formulate and discuss the equations of motion representing the dynamics of 

a subsystem. We derive the equations of motion using Lagrange's Principle [1]. We discuss the 

structure of the stiffness matrix that shows up in the Lagrange's equations of motions: The 

quadratic potential energy function of the generalized displacements must satisfy translational 

and rotational invariance. We shall solve the resulting equations of motion in the subsequent 

chapters. 

2.1     Equations of Motion 

We consider a dynamical subsystem that has N+M degrees of freedom and a quadratic potential 

energy function, V(fi,6, ...,£N+M), of N + M generalized coordinates, &;i = l,...,iV + M. 

These generalized coordinates may be thought of as being the generalized displacements of the 

components of the subsystem from their equilibrium positions. This subsystem interacts with 

the outside world through the first N of the N + M generalized coordinates £,;j = 1,...,N. 

We denote the generalized forces that are applied to the system through the first N generalized 

coordinates by fa where k = 1,2, ...N. 

We will now derive a system of equations to describe the dynamics of the subsystem by 

constructing the Lagrangian function of the subsystem and setting its variation equal to zero. 

The Lagrangian function is C = T — V. Here T is the kinetic energy and is a function of the 

generalized velocities, fj while V, the potential energy, is a function of £,-. 

The kinetic energy T (M may be written as: 

, N+M 

nö = 2 E iiMiiti. (2-1) 



The potential energy V (£) is: 

-, N+M 

no = « E tiKati- (2.2) 
*ij=i 

Here M is the positive semidefinite mass matrix of the subsystem and K is the symmetric posi- 

tive semidefmite stiffness matrix of the subsystem. Equations (2.1) and (2.2) give the Lagrangian 

as: 

i N+M , N+M 

£ = T~V=2T, tMiZi - 2  E Wut*- 

The equations of motion which follow from Lagrange's Principle [1] are: 

d     dC 

dt \dZj)     di 
dC      , 

(2.3) 

(2.4) 

We substitute equation (2.3) into equation (2.4) to get the equations of motion of the subsystem 

in terms of the generalized coordinates-ordinates £J: 

N+M 

E MA + Riß) = ft. 

We now split equation (2.5) into two parts as follows: 

(2.5) 

/ 

V 

Mij    Miq 

Mpj   Mpq 

\ 
( ■■ \ 0 

+ 

I \iq) \ 

iV {j       rZ{g 
\ 

pj        VQ 

(, \ 

\t9 J 

fi 

\°; 
(2.6) 

Here we arrange the generalized coordinates such that the first N generalized coordinates corre- 

spond to the attachment degrees of freedom and the next M generalized coordinates correspond 

to the internal degrees of freedom of the subsystem. Once again we note that the system in- 

teracts with the outside world only through the attachment degrees of freedom. Henceforth we 

shall refer to the attachment degrees of freedom as the degrees of freedom of the attachment 

points. In equation (2.6) we use the following index representation: 

i,j = 1,2,...,N 

p,q = N + 1,..,N + M 
(2.7) 



In all that follows we adopt a summation convention where repeated indices are summed 

through their range. Since we require different ranges to distinguish between attachment points 

and internal degrees of freedom we adopt the convention defined by (2.7). We now write the 

symmetric stiffness matrix, K, in the form: 

/ \ 
Ku K IN 

K N\ K NN 

KlAT+1 

KJVJV+1 

K JV+11 
KN+1N       &N+1N+1 

T KN+M1 

KlN+M 

KNN+M 

KN+1N+M 

KN+MN+M 

(2.8) 

\   "JV+A71 "    KN+MN    R-N+MN+1     '••    ^IS+M1\+M  j 

Here the A''s represent the stiffness parameters between the attachment degrees of freedom 

or the internal degrees of freedom. The K'S and their transposes, K
T
 represent the stiffness 

parameters between the attachment degrees of freedom and the internal degrees of freedom. 

We now drop the summation symbol and write equation (2.6) as follows: 

MijUj + Mipip + Kijij + Kiptp = fi (2.9) 

and 

Mpq£q + hpqZq — —Mpi£i — Kpt'£t- (2.10) 

Equations (2.9) and (2.10) are the equations of motion of the subsystem. We can now solve 

(2.10) for the unknown generalized coordinates, £p and use this in (2.9) to derive a relationship 

between the applied forces and the first N generalized displacements. The solution to these 

equations is presented in the following chapters. 
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2.2    Translational and Rotational Invariance 

Here we examine the structure of the stiffness matrix more closely. The properties of the stiffness 

matrix are integral to the behavior of the dynamical system. We determine the properties of 

the stiffness matrix, Kij, by enforcing translational and rotational invariance on the quadratic 

potential energy function of the subsystem following [2]. 

2.2.1    Translational Invariance 

The potential energy of the subsystem given by equation (2.2) should be invariant for an arbitrary 

translation of the entire subsystem. This is so because the potential energy of the subsystem 

as defined by the quadratic in equation (2.2) is derived from relative generalized displacements 

of the components of the subsystem from one another. We now denote a unit generalized 

displacement of the first N generalized coordinates, £,■ in the 'a' direction by the vector Qa and 

a unit generalized displacement of the next M generalized coordinates, £p in the 'a' direction 

by the vector (,pa. For example if £,■ represent displacements in Cartesian coordinates, then £ 

would be a (M + N)x (3) matrix, (f and 'a' would be a vector in R3. We now use the principle 

of translational invariance of the potential energy function to write: 

Vfatp) = V (fc + Cf aa,Zv + CX) • (2.11) 

We write the left hand side and the right hand side of equation (2.11) using the form of K{j 

from (2.8) and equation (2.2) as: 

w    \ 
(2.12) ^(£,&)= 2 ( fc   £P 

IV ij      Kiq 

PJ      ^pq \*qJ 
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Similarly the right hand side of equation (2.11) is written as: 

v(e,- + cx>& + cx) 

21 ti + ct"a eP + CP
a«a 

V pj PQ 

\ 

(2.13) 

J \t* + <X*a ) 

The ranges of the indices in equation (2.12) and (2.13) are given by (2.7) and a = 1,2,3. We 

now expand equation (2.12) and write: 

V{£i,£p)      -      2   I    ZiKij + tpKpj     ZiKiq+ZpKpq 

(      \ 

—      — {£i&ij£j + £pKpj£j + £iKiq<iq + £p^pq£q) ' 

Similarly we expand equation (2.13) to obtain: 

\[(ti + Oa) Kv + (ep + gaa) npj   (ft + C,?a") niq + (ep + $a") K 

( \ 

\ [(fc + Cr*a) Kii fa + Cfa01) + (ft, + $a°) «Pj (fc + (?aa) + 

(6-+cr o Kiq [iq + ex) + fa + ex) Km (e, + ex)] • 

From equations (2.11, 2.14 and 2.15) we have: 

(2.14) 

(2.15) 

(pKpjCfa01 + £a%i& + CpaaKpjCfaa + ft/c^a" + Cf aaK,-,£, + C,?aaniqCqa
a + 

£,pKpqQaa + QaaKvqZq + ^aaKpq^aa = 0. (2.16) 
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The principle of translational invariance holds for arbitrary translations, 'a'.   Thus equation 

(2.16) splits into two parts, one with terms linear in 'a' and the other with terms quadratic in 

Cra-KijCfa- + C^aKpjCfaa + C,?aaniqCqa
a + QaaKpqCqa

a = 0 (2.17) 

tiKi&a" +C?aaKigtq + ZPKpqqaa + qaaKpgtq    =   0. (2.18) 

We note that equation (2.18) must hold for any displacement of the subsystem, (&,fp). Thus 

equation (2.18) also splits into two parts: 

ZiKijCfa" + (r^KijZj + CXK«& + ^Kiq^aa = 0 

ZpKpjtj aa + C?aaK,-,£, + ipKpqCqa
a + QaaKpq£q = 0 

(2.19) 

(2,20) 

We now use the fact that equation (2.19) should hold for each element of vector & because it 

holds for arbitrary &. We therefore can factor out & and £,■ from equation (2.19) and write: 

KijC*aa + (?aaKji + QaaKpi + KiqQaa = 0. 

Similarly from equation (2.20) we get: 

«wCX + OaKip + KpiCqa
a + QaaKqp = 0. 

(2.21) 

(2.22) 

The stiffness matrix, K , is symmetric.  Therefore in equation (2.21) KijCfa01 = (,faaKji 

and (pa
aKpj = Kjq(qa

a. We use this in equation (2.21) to get: 

KijCfaa = -KiqQaa 

tfarKij = -CX<; 

Qfa-IUj = -Kjqaaa 

(2.23) 
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(2.24) 

Similarly from equation (2.22) we get: 

"■pqQq a     = ~Q a   Kip 

KpqQa<* = -/^CX 

QaaKm = -Qa<*Kiq 

$aaKpq = -K^Cfa" ^ 

2.2.2    Rotational Invariance 

In this discussion we consider the special case of a subsystem comprised of point masses attached 

to each other by linear spring elements. The generalized coordinates of such a subsystem can 

be the displacements of the point masses from their equilibrium positions. The potential energy 

of the subsystem as given by equation (2.2) is invariant for small rotations of the subsystem. 

For this subsystem we may represent a small rigid body rotation by a (N + M) x (JV -f M) 

transformation matrix, Q, where Q = I + Q. Here I is the identity matrix and fl is an 

antisymmetric matrix. We now use the principle of rotational invariance of the potential energy 

to derive further structure to the stiffness matrix. 

We denote the position vector to the ith attachment point by R{ and the position vector to the 

pth point mass of the subsystem by Rp. We now subject the subsystem to a small rotation defined 

by the transformation matrix Q . This rotation transforms the set of generalized coordinates of 

the subsystem as follows: 

ii = Qij (Rj + Zj) - Ri (2.25) 

4 = QPq {Rq + £,) - RP. (2.26) 

Here £,- and £p are the displacements of the attachment points and the point masses after the 

13 



rotation. We use the principle of rotational invariance to write: 

v(ti,tP) = v(£uiP). 

Substituting equations (2.25) and (2.26) into (2.2) we get: 

v (ft, iP)   =   2 ( (Ri + ft) Qa - Rj  (RP + ft>) QPq - R, J 

( \ I \ 

(2.27) 

\    Kqk      JV   J 

Qki (Ri + ft) - Rk 

Qrs (Rs + ft) - RT   j 

(2.28) 

In all that follows the transpose notation, K
T, is implicit when the first index of K is p, q, r,.... 

We note that for small rotations, Q — I + J? , and small displacements, ft and ft,, we may 

drop the quadratic terms, J?£, in equations (2.25) through (2.28), therefore: 

4"i — si T ilijiij (2.29) 

and 

Sp — Sp   i   «pq-Kq. (2.30) 

We use equations (2.29) and (2.30) in equation (2.28) and expand to write: 

V (ft, ip)       =       r [ (& + ^fi0') K3k (fti + VklRl) + (ft + RpVpq) Kqk (fti + ^klRl) + 

(ft "I" Ri^ij) Kjr (ft ~F llrsRs) "f (ft T Kpllpq) -Kqr (4> T "rs^sj 

We can now use equations (2.31) and (2.14) in (2.27) to write: 

(2.31) 

ZjKjkQklRl + RittijKjk£k + R&ijKjk&klRl + ^q^qk^klRl + Rp^pqK'qk^k + 

TtpiCpqlxqr^r   i   J^p^^pq^qr**rs-Kjs — "• (2.32) 
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Equation (2.32) holds for arbitrary rotations, S2. We use this to split equation (2.32) into two, 

one with terms linear in J? and the other with terms quadratic in 17 . 

R{Q,ijKjk^lklRl + RpQpqKqk&klRl + Ri£lijKjrQ.rsRs + RpQ,pqKqrilrsRs — 0 

and similarly: 

ZjKjktiklRl + Ri&ijKjk£k + ZqKqkttklRl + RptlpqKqktik     + 

^jKjr^^rs-^s   i   Iti^I'ijK'jrQr ~T" ^q^qr^^rs-^s T ■K>p*lpq-L*-qr^r     —     "• 

(2.33) 

(2.34) 

We note that the principle of rotational invariance holds for arbitrary set of generalized dis- 

placements, (&,£p). We use this fact to write: 

Kjk^lklRl + RfälkKkj + RpQpqKqj + KjqSlqpRq — 0 (2.35) 

and: 

Kqk^lklRl + Rfolk^kq + KqTQ.rsRs + RsQsrKrq — 0. (2.36) 

Since fl is antisymmetric we may use 0;J = —(2,-,- in equations (2.35) and (2.36).  Thus, we 

conclude that Kij is symmetric, i.e. ii\j = Kji. 

Equation (2.33) however, may be written in the form of a matrix equation in order to exhibit 

another interesting property of the stiffness matrix, K: 

I 
i Hj      i l\q 

\ I 
■iijfc     Kjr 

\ I 
&kl     &ks 

\ 

ilrl     Sirs 

I   R{   Rp 

y  ilpj     ilPq  )   \-Kqk     lvir  J   \  "rl     * 

We write equation (2.37) in symbolic form as RfiKfiR^= 0 

'^ 

\ Rs J 

= 0. (2.37) 
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Chapter 3 

The Exact Dirichlet to Neumann 

Map 
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In section 3.1 of this chapter we derive the solution of the equations of motion, (2.9) and (2.10). 

We write the solution in the form of a convolution integral using a Green's Function. In section 

3.2 we use this solution to formulate a Dirichlet to Neumann Map or DtN [4]. The DtN map 

can be written as: 

fi = F(6). (3-1) 

Here F is the Dirichlet to Neumann map. The forces /,■ are the Neumann data and the displace- 

ments of the attachment points £,- are the Dirichlet data. Thus the DtN describes the forces 

exerted by the subsystem on its environment in terms of the displacements of its attachment 

points. 

In section 3.3 we present a representation for the total mass of the subsystem and discuss 

the structure of the mass matrix. In section 3.4 we define the modal mass tensor in a manner 

similar to Pierce [3]. The modal mass tensors form the kernel of the convolution integral in the 

exact DtN map. We also derive some the properties of the modal mass tensors. In section 3.5 

we define another quantity that we call the modal stiffness tensor and derive its properties. In 

the last section, we provide alternative representations of the Exact DtN map in terms of the 

modal mass tensors and the modal stiffness tensors. 

3.1     Green's Function and Exact Solution 

We shall now formulate the exact solution of equations (2.9 and 2.10) in terms two Green's 

functions, g^ and g^M\ We introduce Green's function1 g£\t — r) which satisfies the equation: 

MPq&\t - r) + Kpqgff(t - r) = -KpiS(t - r) (3.2) 

:Here we use the same index convention as described in equation (2.7). 

17 



and the Green's function <rt- '(t — r) which satisfies the equation: 

MPqg
(

qf\t -T) + K„gW(t - r) = -Mpi6(t - r). (3.3) 

Here the causality condition can be written as: 

9%\t - T) = gWy - T) = 0, V    t<r. (3.4) 

We now use equations (3.2), (3.3) and (3.4) in equation (2.10) to write the full solution: 

t 

£P = / [(#(' " ^M) + (4f \* ~ O&r))] dr. (3.5) 
— <X) 

The structure of equations (3.2) and (3.3) are similar. We therefore need to solve for only one of 

the Green's functions. Henceforth we refer to this Green's function as g(- '(t — r), while noting: 

■M)(i _r\j_ K   „W( Mpqg
(

qt'(t -T) + Kpqg\t>(t -T) = -Api6(t - T) (3.6) 

and 

g{
qt\t-r) = 0, V     t<T. (3.7) 

Physically the Green's function gpi may be thought of as the generalized displacement of the pth 

internal degree of freedom due to the ith component of the generalized force. 

We now introduce the change of variables 

g{
qt\t) = M-^V-O- (3-8) 

Here we need not compute M~x'2 explicitly. We only need to note that M1'2 is the unique 

positive definite matrix that satisfies M1/2M1/'2 = M. Substituting equation (3.8) into (3.6) 

yields: 

MpgM-'^yriit) + KpqM-^2yri(t) = -ApiS(t). (3.9) 
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 1 /o  1 ley  -I /Q 

Left multiplying the free index of equation (3.9) with Msp ' and noting that Msp MpqMqr ' = 

6sr, yields: 

ysi(t) + (M-xl2KM-l'2)sr yri = -M;p
ll2Api8{t). (3.10) 

 i/o  1/2 
In equation (3.10) we can see that Msp ' KpqMqr is a symmetric M x M matrix because K 

is symmetric. Further, M7P KpqMqT ' is positive definite; i.e., for any vector x G RM we 

have: 

xr (M_1/2
KM

-1/2
) x > 0. (3.11) 

Since \.M7P KpqMqr ' J is symmetric and positive definite, it has M positive eigenvalues, 

(u/F))2, P = 1,...,M, and M distinct orthogonal eigenvectors, ^p\ P = l,...,M (The range 

of indices are as defined in equation (2.7). Henceforth there is no implied summation on super- 

scripted indices unless explicitly specified). We can use the properties of f M7P    KpqMqr '  J to 

write ysi as a decomposition of normal modes: 

M 

¥«(*) =E(7.)(P)*}P)(')- (3-12) 
P=i 

Using equation (3.12) in equation (3.10) yields: 

M M 

£ (7*)(P) *P(0 + (M-^JSTJIf-1/3)    £ (7r)
(P) ^(0 = -M-1/2^,-^). (3.13) 

P=l Sr F=l 

We now multiply equation (3.13) by {-)s)      and use the orthonormal property of the eigenvectors 

■j^R> to obtain: 

M 

2?\t) + (7,)(Q) (M-^KM-^)    £ (7r)«> *j0)(«) = - (7s)
(Q) M-V'AnSit).        (3.14) 

srQ=l 

By the definition of eigenvectors, (7s)   ' we note that: 

(M-^KM-
1
'

2
)    (7sp = (M-^KM-1'2)    (7,)W) = (u;2)W) (7r)W> . (3.15) 

V / 57* V / rs 
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Substituting equation (3.15) into equation (3.14) yields: 

*}O)(0 + («»)«>*}«>(*) = (7sP \M-^ApiS(t) (3.16) 

Equation (3.16) represents M equations for M time dependent vectors, Zi(t). Further, causal- 

ity condition (3.4) requires that z] \t) = 0 V t < 0. We use this to solve equation (3.16) to 

get: 

(3.17) 

Substituting equation (3.17) into equation (3.12) yields: 

M 1 / 
Vsi(t) = -E (7.)W) "M (7,P [M-1/2Apisin (WW>*)] . (3.18) 

Q=i w 

We obtain the Green's function, g\{ \t), by using equation (3.18) in equation (3.8): 

^(t) = -M-/2 E {j^r K1/2A-sin (JQ)t)} ■ <3-19> 
0=1 

We obtain g^(f) and g^M^(f) by replacing Api in equation (3.19) with ACP; and Mpi-, respectively. 

Thus we obtain: 

M 

rifto = -*C/2 £ -1/2^^^rM-i/2Kpisin(w(Q),)j 

and 

0=i 

M 

u (0) 
(3.20) 

*r }o = -^1/2 E 1/2 g to)(Q) 

0=1 w (0) M-1/2Mp,-sin(a;W)i)] (3.21) 

The generalized displacements of the internal degrees of freedom are thus given by equations 

(3.5, 3.20 and 3.21) as: 

& = -  / M"1/2 E ^!^W/2 sin («<«>*) L ^(r) + M*fc(r)l dr. (3.22) 
-4       o=i   w i J 
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3.2    Exact DtN Map 

Here we shall use the solution (3.22) in equation (2.9) to get the exact DtN map. Further 

we explore many alternative representations of the DtN map. Substituting equation (3.22) in 

equation (2.9) yields: 

fi    =   Miß + Kifo - Uip + Miv-^\ J M"1/2 ]T 

sin (Jp\t - r)) | MSJ^(T) + KaJtj(T) I dr. 

(7«7r) (P) 

u (P) 
M-1/2 

(3.23) 

This is one form of the exact DtN map. We shall now simplify it. We denote the outer product, 

M_1/27 ® 7M-1/2, in equation (3.23) by A: 

M-i/2  (P)  (P)M-i/2 = A(P) 
VQ        >Q       'T rs ps 

(3.24) 

We note that Apq in equation (3.24) is not the same as Api corresponding to the Green's function 

gA of the previous section. Thus, using the notation introduced in (3.24) in equation (3.23) 

yields: 

/ d2\    }   M A(P) 

fi = Mijij + Kiiij - f Kip + Mip-^ \ j J2 JP) 
sin (w(p)(* -T)) )   j 

'-oo P^1 

M.jti(.r) + KaJtj(T)\dT. (3.25) 

We now integrate the terms containing '£' in equation (3.25) twice by parts to obtain: 

}   M  A{P) M    A{P) 

/ 2 TIPI^
sin (w(p)(* ~ r)J ^'(r) dr=J2 TZühä^W 

Jco P=\ P=\ ^ I 

\ M    A(
P) 

-     / E (ä%^i ™ («<P)(* - rj) 6(r) rfr 
—oo   "—1 

We use equation (3.26) in equation (3.25) to get: 

fi = Miß + Riß - Uip + Mip-^\ I J2 tJp)\2Ks^^+ 

(3.26) 
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*   M   /AP) 
sips /E    &"* - 75%«*U(^(«-r))6*! (3.27) 

Now we expand equation (3.26) by passing the time derivatives through the integrals, to obtain: 

M 

- *ip J 12 [Jp)Msj" p%Ksj)sin r   (*"r))ei dr 

f.p / E Kp)4^ - ^y««• sin K}(< - *o) & *■ (3-28) 
JL P=i \ u / 

+   M{. 

M 

We may simplify equation (3.28) by noting that ^MipA^Msj = Mij and writing the kernel 
P=\ 

of the integral in the form of a matrix product. This yields: 

M AP) '    M 

fi = Kijtj - E ^7$jü«Mt) + J   E ^(P) sin K'C - r)) 

(OT?(   -MMP))2    K 

P=i 

V 

A(p)   A(p) 

A(p)   A(p) 

-M(w(p))2 

V K 

Z(T)dT (3.29) 

Equation (3.29) represents the exact DtN map of the subsystem. 

3.3    The Total Mass 

The total mass of the system is given by: 

/ 

M> Total si    Cp 

Mij    Miq 

\ 

Mpj .MM / 

/      \ 

\C" / 

(3.30) 

Here £ is the unit translation vector as defined in section 2.2.1. This may be seen by considering 

the total kinetic energy of the subsystem in uniform translation. 
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It is, perhaps, more instructive to consider the approximate DtN map for very low frequen- 

cies. From equation (2.10) we get: 

PQ^Q —      ^pisi       -»"pist       MpqKq- (3.31) 

For low frequency oscillations we may ignore the terms with time derivatives in £, to obtain: 

t,q ~ qp ^P'St- (3.32) 

We may better our approximation of £q by iterating, i.e. by substituting equation (3.32) back 

into equation (3.31) and left multiplying by K_1: 

£P » -Kj-Kqiti - KjMq£i + KjMqrKr^Ks£i. pq ±v± qr *■*■ rs (3.33) 

We now use equation (3.33) in equation (2.9) and ignore terms containing fourth derivatives in 

£, to obtain: 

Ji      ~      -"lijQj -f- liijqj — Miplipq Kqjqj 

+     K. ip -Kpq KqjZj — Rpq Mqj£j + Iipq MqrKrs Ksj£jj (3.34) 

We rearrange equation (3.34) by grouping terms with corresponding derivatives in £, to obtain: 

+ 

Mij - MipKpq
lKqj - KipKpqMqj + KipKpg

1MqrKra
1Ksjj £j 

liij — Kip Kpg Kqj    qj. (3.35) 

Equation (3.35) holds for arbitrary displacements of the subsystem. We now consider unidi- 

rectional force and displacement such that: 

& = Ct*(0> 

/,■ = CiF(t). 

(3.36) 

(3.37) 
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Here £ is a generalized translation vector as defined in section (2.2.1). 

We now use equation (3.36) in equation (3.35) along with the results of translational invari- 

ance, equations (2.23) and (2.24), to obtain: 

/,■ =  iMijQ + MipCp - KipKpq
lMqjCj - KipK^MgrCr] x(t) 

We can left multiply the free index of equation (3.38) by £,- to get: 

Cifi = [CiMijCj + QMip(p + CpMpid + CpMpqCq]x(t). 

(3.38) 

(3.39) 

Equation (3.39) is a statement of Newton's Law for the entire translating subsystem. The left 

hand side is £F in the direction £. The right hand side "Ma". We observe that the total mass 

of the subsystem is given by: 

MTotal = CiMijCj + QMipCp + (pMpiO + CPMpq(q. 

This result shall be used in the following sections. 

3.4    The Modal Mass Tensor and its Properties 

(3.40) 

We define our modal mass tensor as follows: 

/ 

m^] = jjnj* ( -MiMP)f   «.» 
A(P)    A(P) \ 

\ 

( 

I 

-Mrji^Y 
\ 

\ 
vsj / 

(3.41) 

A{P)   A(P) 

Here A^p) is defined in equation (3.24). We now show that summing the modal mass tensors 

over all modes, P = 1,..,M, yields the total mass of the subsystem. 

M M 

X>lP) = E M- A^M ■ -       iq    A^M — 

M. A(P)    
K*i     +     Ki*    AW    

Ksj (3.42) 
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We now expand each term on the right hand side of equation (3.42) using the definition of A^p' 

from equation (3.24) to obtain: 

M M 
£ MipAp?Mrj = £ MipM^h{

q
P¥sP)M^)Mrj. (3.43) 

P-\ P=I 

We know that the eigenvectors are orthonormal, and therefore: 

M 

£ 7jP)7iP) = V (3-44) 
p=\ 

We use this in equation (3.43) to get: 

M 

p=\ 

=   Mij. (3.45) 

Similarly we find 

M M 

We left multiply both sides of equation (3.15) by K^M1/2 to get: 

v-     Kjq    A(P)M . _ y^ _^1£_ M-l/2  (P)  (P)yM-i/2M . C3 4Q) 

2^   (U(P))2     1r rJ  ~~   2^   (uj(P))2      qS S        P PT V V>.V3) 

M-V'iP = {^p)fK^MllHP). (3-47) 

Now we use equation (3.47) in equation (3.46) to obtain: 

M 

Y,jj%y4P)Mrj  = niqK;p
lMliHstM;r

ll2Mri 

=   niqK£Mpj. (3.48) 

The last two terms of equation (3.42) similarly yield: 

£ MipAp
p)jj^y2 = MipK;q\qj (3.49) 

and 

M 

£ J^4P)j^)y = "ipK^KJ".*- (3-5°) 
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Note that we may also derive the relation: 

M      AP) 

Ep% = »--.. (3.») 

We now use equations (3.45, 3.48, 3.49 and 3.50) in equation (3.42), multiply by £; from the 

left and (j from the right and use the results of translational invariance from equations (2.23 

and 2.24) to obtain: 

M 

E Cim!fO = 0Mi& + bMir(p + Cp^piCi + CpMpgCg- (3.52) 
p=\ 

We compare equation (3.52) with equation (3.40) and see that the modal mass tensors summed 

over all frequencies yield the total mass of the subsystem, i.e: 

M 

E OSf ^ = MTotal. (3.53) 
p=\ 

We can rewrite the exact DtN in terms of the modal mass tensors.  Substituting equation 

(3.41) in equation (3.29) while noting (3.51) yields: 

'    M 
U = lUiii - KipK-lKsj^(t) +   / E u^rr^P sin (Jp\t - r)) £(r) dr (3.54) 

-co *>=! 

In the subsequent chapters we utilize the properties of the modal mass tensors to provide ap- 

proximate representations of the exact DtN (3.54).  Note that the exact DtN as presented in 

equation (3.54) contains a discrete sum over all modes in the kernel of the convolution integral. 

In the sequel we shall find it interesting to consider subsystems that contain small modal 

damping. The DtN for such a subsystem may be written approximately in the form: 

*    M 

Si = Kij(j-KipK;s
lnsMt)+ /  E JP)m%] sin (w(P)(* - ')) e-"(P)(<-T)£;(r) ^+0(^.(3.55) 

P—\ 

Here r]^ <C 1 is a small modal damping factor. We emphasize that equation (3.54) is exact, 

however, equation (3.55) is an approximate representation. 
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3.5    Modal Stiffness Tensor and its Properties 

In what follows we find it convenient to define another modal quantity that we call the Modal 

Stiffness Tensor. The modal stiffness tensors are M in number and have the dimensions of 

stiffness. We define the modal stiffness tensors in terms of the modal mass tensors. The modal 

stiffness tensors, like the modal mass tensors contain some inherent physical properties of the 

system. Here we list some of the properties that the modal stiffness tensors exhibit. 

We define the modal stiffness tensors in terms of the modal mass tensors as follows: 

*|f> = -!jVP))2- (3.56) 

We now use the properties of the modal mass tensors to obtain some of the properties of the 

modal stiffness tensors. 

Multiplying equation (3.41) by (u)(p))2 and summing the result over all the modes yields: 

M M 

E(-(P))HP) = E 
p=i p=i 

ip) 
(JV)2MipApMrj - KiqA^Mrj - MipA$Ksj + niq  

Aqs 
pr  i«rj       ,nq^qr   j.vj.rj       ^"ip"pS  '*sj T ™lq      (p)\2    sl 

(3.57) 

We now sum each term of equation (3.57) by applying relations (3.44) and (3.51). This yields: 

M 

J2("{P))2m\p = MipMpq
lKqrM;s

lMsi - MipM;q
xnqj - KipMpq

lMqj + KipK-q
lKqi.     (3.58) 

E IC{iP = MipMpq
lKqrMr?Msj - MipMpq

XKqi - KipM;q
lMqj + KipK-q

lKqj. (3.59) 

M 

E 
p=\ 

Equations (3.58) and (3.56) show an important property of the modal stiffness tensors, namely: 

M 

E 
p=i 

Further, we multiply equation (3.59) from the left by £• and from the right by Q and use the 

results of translational invariance from (2.23) and (2.24) to obtain: 

M 

p=\ 
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We can use the form of the modal stiffness tensors and their properties to write the exact 

DtN map in an alternative form. Integrating equation (3.54) by parts twice in time and using 

the definition of the modal stiffness tensors yields: 

j £ <"(P)£if} sin {Jp\t - TJ) fc(r) dr. (3.61) 
-co 

Note that equation (3.61) is an exact relation. Equations (3.54) and (3.61) are two important 

forms of representing the exact DtN map of the subsystem. 
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Chapter 4 

Approximate Dirichlet to Neumann 

Maps 
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In this chapter we introduce the modal mass function m(u>). In section 4.1 we re-express the 

exact DtN map by replacing the modal mass tensors by the modal mass function. This substi- 

tution is motivated by the work of Pierce [3]. In the following sections we obtain representations 

for approximate DtN's by approximating the modal mass function. We calculate the error in- 

curred by approximating the exact but discontinuous m(oj) with a continuous approximation 

m(a;). We show that by imposing certain restrictions on m(w), the error can be bounded for all 

time. The restrictions thus determined lead us to a hierarchy of approximations that we discuss 

at the end of the chapter. 

4.1    Modal Mass Function and Its Properties 

We introduce the modal mass function m(w) to exactly replace the modal mass tensors as 

follows: 

M 

m(w) = £ m(P)-ff(^ - u>(p)). (4.1) 
P=\ 

Here H is the Heaviside step function. Differentiating equation (4.1) with respect to u> yields: 

^^=f>(p)%-u,(p)). (4.2) 

Equation (4.1) and (4.2) are equivalent.  This definition of the modal mass function is similar 

though not identical to that of Pierce [3]. We note that the modal mass function m(u>) as defined 

in equation (4.1) and (4.2) is highly discontinuous. Some of the general properties of the modal 

mass function are [5]: 

m(0) = 0 

(4.3) 

dm.(u) 
doj 
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Another property of the modal mass function is obtained from its definition and the property 

of the modal mass tensors (3.53). i.e.: 

oo 

0 

Further, we use the definition of the modal stiffness tensors and equations (3.56) through (3.60) 

with the definition of the modal mass function to obtain the following results: 

on OO 

2dmij(uj)      _  f dfCij(oj) 

ff/*^> = MTo«al^ (44) 

J du J      du 
o o 

du 

oo 

I      2       du = MiVMvqK1TMr}Msj ~ MipMpq
XKqj - KipMpq

l Mqj + KipKj^Kqj 

o ^  ■ ' 

1  odmaiu) CiKijCj + CiMipM^KqrM-^MaJCj- 
CiJ du    Cj 

0 QMipM-^KgjQ   -   CiKipM^MgjCj 

Here we have introduced the quantity K.{j(u) = u2m,ij(u). We call this the modal stiffness 

function. 

4.2    The Approximate DtN Map and Error Bounds 

In the previous section we introduced the modal mass function m(u). In this section we use the 

properties of the modal mass function to find an approximate modal mass function m(u). We 

then approximate the exact DtN (3.54) by using the approximate modal mass function m(w). 

The error made in approximating the exact DtN is bounded by imposing conditions on the 

choice of the approximate modal mass function. 
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CO 

Figure 4.1: Exact and Approximate modal mass functions 

We use the definition of the modal mass function (4.1) in the exact DtN (3.54) to obtain: 

t   oo 

fi(t) = Kij£j(t) - KipKpj-Kqjtj + u     }     smu(t - T)£"(T) dudr (4.6) 
0   0 

Here we emphasize that equation (4.6) is exact in the absence of damping and no approximations 

have as yet been made. Note that the time integration starts at t = 0 because we assume that 

the subsystem has no displacement history prior to this. When the number of modes is high 

we expect that the discontinuous modal mass function m(cj) is well approximated by a smooth 

function m(w) such that: 

m(w) = m(a;) + eme ( — ) , e < 1. (4.7) 

Here eme (j) is a small but rapidly varying function which represents the error in approximating 

m(u>) by m(w). The parameter e represents the non-dimensional modal spacing. The relation 
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(4.7) is demonstrated pictorially in figure 4.1. The stair step line represents an example m(u>) 

while the smooth curve represents rh(u). 

We obtain the approximate Dirichlet to Neumann map by substituting equation (4.7) into 

(4.6). This yields: 

fi{t)     —     &-ij£j{t) ~ Kiphpq Kqj£j + 
t   oo 

I ["^J^ sinu(t - T)£"(T) dudr + error(i). (4.8) 
o  o 

The error term in equation (4.8) is given by: 

t   oo 
dme (f) r  f   dm (—) 

error(/)    =     /   / u—j1^-sin u(t - T)£"(T) du dr 

o  o 

=   Im\[]"dm2^ J"{t-T)Z"{T) dudX (4.9) 
*• 0   0 ' 

Here we have written the trigonometric function sin u;(Z-r) as the imaginary part of the exponent 

CIU;(*-T). We now find error bounds by integrating equation (4.9) by parts once in time and twice 

in frequency. 

Integrating equation (4.9) once in time yields: 

dme (f) eM<-T) ' 
oo 

du > — errorf*)    =    /m    L"'^''">(,) 
J du —tu 
o 
oo   t 

0 

We now use the relation etß = cosö + isind in equation (4.10). This yields: 

"^(r),..   ^7 ^(7) erron (t)   =   t"(t) J   ™ J J du- £"(0) J     Je' cosu(t -r)du- 
0 0 

r °r dme (-) 
- K*> cosu{t - T)C(T)dudr. (4.11) 
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We assume that the subsystem is initially at rest with £i"(0) = 0 and choose the approximate 

modal mass function m(u>) such that: 

°? A- (   \ M 

f ^1 du=Y, m^H(oj - J^); rh(0) = 0. (4.12) 

We now use equation (4.12) with (4.1) and (4.7) to obtain: 

I      dU' (4.13) 

^ me(0) = 0,      me(oo) = 0. 

Conditions (4.13) enables us to eliminate the first term in equation (4.11). Thus, we get: 

<*) = -Rel I fdm'JP e^-^eXr) dudrl. (4.14) 

We integrate equation (4.14) once in frequency to get: 

t 

i"\r)dr 
w=0 

u>=oo 
mi error(f)    =    — eme I — )  / cosu>(£ — 

o 
t   oo 

f [m.e(-\(t-T)smu(t-T)Z'"(T)dudT. (4.15) e 
b o 

The conditions in (4.13) eliminate the first term in equation (4.15). We integrate the remaining 

term by parts once more in frequency. Thus we obtain: 

t 

error(i)    =    -e2me_i [-)     (t - T)smu(t - T) 

w=oo 
III i"\r)dr 

w=0 

t   oo 

+   e2 / I mij (-) (t - T)
2
 cosu(t - T)^"\T) du dr. (4.16) 

0   0 

Here we have introduced the integral of me(u>): 

_x(w)=  fme(u')dw'. (4.17) 
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We now impose the following conditions on the choice of the approximate modal mass function 

m(w): 

mix(0) = 0 

mia(oo) = 0 

We use (4.18) in equation (4.16) to get: 

erron 

t   oo 

(t) = e2 I f mii (-) (t - r)2 cosu(t - T)Z'"(T) du dr. 

0   0 

We shall show that error(/) is bounded in the next section. 

(4.18) 

(4.19) 

4.2.1    Error Bounds 

In this section we examine the functions in the integrand of the error term in equation (4.19) to 

determine their maxima. We use these maxima and integrate the error term once in time and 

once in frequency. By doing this we obtain the maximum value of the integral and thus a bound 

on the error. 

We first examine the function (t - r)2 for values of r < t in the range 0 < t < oo.   This 

yields: 

(t - rf < i\ 

In addition, we have: 

cosu>(2 — r) < 1. 

We can use equations (4.20) and (4.21) in equation (4.19) to obtain: 

error(i) <£2*2 

oo 

rwHII/mi!^)^ 

(4.20) 

(4.21) 

(4.22) 
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We now impose: 

oo oo 

/ mij l — \duj = e     mi^cj') du' — eC = constant < oo. (4.23) 
0 0 

Here we have assumed: 

oo 

du < oo. (4.24) 

We use (4.23) in (4.22) to bound the error as follows: 

error(f) <e3t2 no V   €    >     0. (4.25) 

From equation (4.25) we see that the error is bounded for simulation times / = (^(l/e3/2). 

We stress that this result is not an asymptotic error estimate. Equation (4.25) holds for any e 

and not just the limit as e —► 0. 

If there were damping present in the subsystem, then we might expect that the damping 

drives the total response to zero before the error can accumulate. We show this by considering 

the error made in approximating the DtN with damping (3.55). In that case the error is given 

by: 

t   oo 

errorl (t) = e2 f f mij (-)(*- rf cosu(t - r)e-"(f-T)^"(r) dudr + 0(rj). (4.26) 
o  o 

We now examine the function f(t) = Z2e-7)t in the range 0 < i < oo, 0 < ?) < 1. To obtain 

the maximum of f(t) we differentiate it with respect to time and set the result equal to zero. 

This yields t = 2/rj. Further, this stationary point is a maximum. Thus f(t) is bounded and we 

have: 

(t - T)2c-lM(*-r)     <     (j _ r)2e-r,min(t-r) 

/     „     \ 2 
< ,-2 

> ^min, 
(4.27) 
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We use equations (4.27), (4.21), (4.23) and (4.24) in equation (4.26) to bound the error in the 

presence of damping. This yields: 

error(/) <? 
, ^min, 

no V e   >   0,    lim 
rj-+0+ 

(4.28) 

Here C is a constant and we assume that f(t) is bounded. Again, we emphasize that the 

error bound (4.28) holds for all e, and not just in the limit as e —► 0. 

The special case of a subsystem comprised of a number of unidirectional oscillators attached 

to a single unidirectional oscillator was recently considered by Weaver [12]. Weaver numerically 

simulated this system to obtain several response curves. His numerical results for this special 

system show behavior that is consistant with the general results derived in this chapter (c.f. 

equations (4.25) and (4.28)). 

4.3    Levels of Approximation of m.(u) 

Here we enumerate a hierarchy of approximations of the modal mass function (matrix). These 

approximations are based on the structure of the modal mass tensors and the properties that 

the modal mass function exhibit. In each case we list the restrictions on the approximate modal 

mass function such that the error is bounded. 

4.3.1     Case 1 

The crudest form of approximating the modal mass function is to assume an isotropic form. 

This yields: 

m(w) = m(c)(u))6ij. (4.29) 
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We note that the modal mass function must satisfy (4.4). We may use this to get: 

ff/±*^4il<f*, = JW*. (4.30, 

0 

Therefore at this level we only need to choose one smooth function m,ic\{uj) such that it satisfies 

the relation: 

bj-fotidu = MT!ot* (4-31) 
o 

We note that equations (4.31) and (4.5) imply that the attachment point stiffness matrix Kij 

should be isotropic. If we approximate the modal mass function using (4.29) the error is bounded 

only if (4.3) through (4.5) are satisfied and in addition, Kij is isotropic and the coupling mass 

Mip = Mqj = 0. We note that this level of approximation seems unrealistic, especially when the 

number of modes in the subsystem is low. The only physical property that this approximation 

captures is the total mass of the subsystem. 

4.3.2    Case 2 

We may use the properties of the modal mass function to form a better approximation of it. 

In particular from equation (4.5) we note that the modal mass function is related to the low 

frequency stiffness matrix KivK~q
lnqj of the attachment points, i.e: 

oo 

/ u*  "dl,     dw = KipKnKu + MipM-iKgrM-^M.j - MipM^Kgj - KipM-q
lMqi     (4.32) 

0 

In the special case where the coupling masses Mip and Mqj are zero, equation (4.32) reduces to: 

oo 

Jj*2jMdu} = KipK-}Kgj t Kl (4.33) 
o 
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We could choose the approximate modal mass function m(w) to have the same eigenvectors as 

that of the low frequency attachment stiffness matrix Kfj. Then the approximate modal mass 

function satisfies the relation: 

oo 

Jco^-^ldu = nipK^nq3 = Kfj. (4.34) 
o 

We also choose the approximate modal mass function to satisfy the relation (4.4).   We may 

write the low frequency attachment stiffness matrix Kfj in terms of its N distinct, orthogonal1 

eigenvectors ipi ' and its positive eigenvalues (A^))2 as follows: 

N 

At-=£(A(/))2 K ® *n • ^ 
i=i 

We now approximate the modal mass function using the known eigenvectors if)\ '.   Thus we 

obtain: 

N 

™o-M = E(^(/)H)2 W] ® ^P] ■ (4-36) 
1=1 

From equation (4.36) we can see that we need to choose only N smooth functions fi^(u>) in 

order to approximate the modal mass function. We note that these functions have to be chosen 

so as to satisfy equations (4.3), (4.4) and (4.33). 

This is a more realistic approximation for the modal mass function. It not only captures the 

total mass of the system but also possesses some information as to how the mass is partitioned 

amongst the attachment points. 

4.3.3    Case 3 

Finally we may form an approximation of the modal mass function that takes into account all 

the systems internal degrees of freedom and dynamics.  We note that the modal mass matrix 

'Note that Kfj is symmetric and positive definite. 
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rriij(u>) is symmetric. Thus we need to have |-/V(JV + 1) functions of u; to completely define the 

modal mass matrix m(u>). We choose these functions m^(u) through m(iNtN+i))(v) such that 

conditions (4.3) through (4.5) are satisfied. 

We have explicit error bounds on this approximation subject to conditions (4.13) and (4.18). 

This would be the most accurate approximation for the modal mass function. This approxima- 

tion would account for all the internal dynamics of the subsystem. Note that the error analysis 

of sections 4.2 and 4.2.1 are valid for this approximation and thus the error would be bounded 

for all time in the presence of a small amount of system damping. 
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Chapter 5 

Implementation Methods: A 

Special Case 
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In this chapter we discuss methods of efficiently implementing our approximate DtN's in a 

numerical simulation. For the purpose of this discussion we shall consider the special case of a 

subsystem that interacts with the environment through a single massless attachment point. The 

internal components of this subsystem are allowed unidirectional motion only. The formulation 

presented here is taken from Barbone [5]. In section 5.1 we interpret this special case based 

on the notation and results of the earlier chapters. We then derive methods to implement the 

DtN's for such a subsystem. In section 5.2 we discuss the implementation of an approximate 

DtN map for the case where the natural frequencies of the subsystem are low compared to the 

time scale of the excitation. In section 5.3 we derive methods for implementing high modal 

density approximate DtN's for a subsystem whose strong resonant frequencies are known. 

5.1     Special Example 

We consider a subsystem that has a quadratic potential energy function in M degrees of freedom. 

This subsystem is attached to the outside world at only one attachment point. This subsystem 

is assumed to have M internal components. We assume that the internal components of the 

subsystem move in a single Cartesian direction only. All the results that were derived in the 

previous chapters apply to this case. 

The equations of motion (2.9) and (2.10) for this subsystem reduce to: 

Mpqiq + Kpqiq = -Kpfo- (5.1) 

and 

K
P(£P ~ Cp£o) = /o- (5.2) 
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These equations are obtained from (2.9) and (2.10) by noting that the mass of the single attach- 

ment point is zero. The index notation in (2.7) still holds with N = 1. Here we have denoted the 

displacement of the attachment point by £o and the force at the attachment point by /o. Note 

that the generalized unit displacement vector, in this case, takes the form of a vector in HM 

with each of its entries equal to unity, i.e. Q = 1, q = 1,2, • • •, M. The results for translational 

invariance (2.23) and (2.24) for this case yield: 

-ftpgCg = ~Kp (5.o) 

and 

&0 = —(pKp = (pKpqCg. (5.4) 

Here we have denoted the stiffness of the single attachment point by ko- i.e. K\\ = UQ. 

5.1.1    Exact DtN Map 

We may obtain the exact DtN map of the subsystem for this case from equation (3.29) as: 

j.   M 
fo(t) = kMi) ~   /   E ™(PVP))3 sin (JP\t - r)) £o(r) dr. (5.5) 

—oo   J      x 

Note that the modal mass is no longer a tensor but rather a scalar. As before we may write 

(5.5) exactly in the continuous form as: 

t      (X) 

/o(<) = fco£o(*) - J /w3^7^ sinw(* - T
KO(T) du dr. (5.6) 

-oo 0 

The conditions (4.3) through (4.5) now become: 

m(0) = 0 m(oo) = MTotal 

(5.7) 
oo oo 

0 
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5.1.2    Approximate DtN map 

An approximate DtN map is proposed for this special case in [5]. A function which is represen- 

tative of the class of functions satisfying (5.7) is used to approximate the modal mass function 

m(u) to get the approximate DtN map. For this special case, the approximate modal mass 

function proposed is: 

m(w) = MTotaler/(-^). (5.8) 

Here erf(z) is the error function of z [6]. Requiring (5.8) to satisfy (5.7) yields: 

Q = \hr— (5-9) 
V MTotal 

Using (5.8) and (5.9) in (5.6) and integrating repeatedly with respect to omega yields the 

approximate DtN map for this special case as: 

t 

fo(t) = feo6(0 - MTotaln
4 J[S- tf(t - rf] (t - r)e-(i^)2n2/2eo(r) dr. (5.10) 

o 

Here we have assumed that the subsystem has no displacement history prior to t = 0. This 

approximate DtN map has no added damping. According to equation (4.25), the error in this 

approximation is bounded for t < 0(l/e3/2), provided (5.7), (4.13), (4.18) and (4.23) hold. 

We now suggest implementation methods for the approximate DtN (5.10) map when the 

natural frequency scale of the subsystem 0 is either low or high compared to the excitation time 

scale. 

5.1.3    Low 0 Implementation of The Approximate DtN 

When the natural frequency scale of the subsystem fi is low the kernel of the integral does not 

vanish quickly and thus equation (5.10) is difficult to integrate numerically. We may, however, 
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use the first few terms of the asymptotic expansion of the Laplace transform of equation (5.10) 

for implementing the approximate DtN in a numerical scheme. 

Integrating (5.10) once in time yields: 

t 

f(t) = Jk(t-T%(T)dT. (5.11) 
0 

Here the kernel k(t - T) is given by: 

k(t -r) = MTotalft
2 [i - n\t - r)2] e-e-^2/2. (5.12) 

Since £'(*) = 0, Vi € (—oo,0] we can take the Laplace transform [6] of equation (5.11) to get: 

£[/(*)] = C[k(t)]C[&(t)). (5.13) 

Here C[f(t)],£[k(t)] and £[£Q(Z)] 
are tne respective functions in the transform domain.   In 

addition, assuming £o(0) = 0, from the definition of the Laplace Transform, we get C[£'0(t)] = 

8£[to(t)]. 

To compute the Laplace transform of the kernel (5.12) we use the substitution t = t — r and 

drop the tildes on the argument to write: 

oo 

£[k(t)] =  I MTotalfi
2 (l - ft2*2) e-<2«2/2e-S* dL (5.14) 

o 

We now complete the square in the exponent and use the definition of the complimentary error 

function of z, erfc(z) from [6] to get: 

OO / \2 

c[k(t)] = yf MTotalfte*2/^er/c (_£_) _MTotalftV
2/^2 Jt2e-{^-^) dt   (5.15) 

o 

tCl        s 
We now use the substitution —-= ■=— = y in the integral of equation (5.15) and integrate 

A/2     v2ft 

repeatedly by parts to obtain: 

4*(01 = ^TotaH " ^MToUl^e^^2erfc (-^) . (5.16) 
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We now employ the asymptotic expansion of the complementary error function from [6]: 

V^ze*2 erfc(z) ~ 1 + £(-1)™!^*^; z - oo, \arg(z)\ < *£. (5.17) 

Using (5.17) in (5.16) with z = —=— and ignoring terms of 0 (jj   and higher we obtain: 

f£[k(t)] = MTotalfi
2,2 - 3MTotalfi

4. (5.18) 

We now use equation (5.18) in (5.13) to obtain: 

s2C[f0(t)) = CUt)} KotaiOV - 3MTotalfi
4] . (5.19) 

We can now take the inverse Laplace transform [6] of (5.19) and use the result for implementing 

the approximate DtN in the time domain. Assuming homogeneous initial conditions the inverse 

Laplace transform of (5.19) is: 

fo(t) = MTotaltftf (*) - 3MTotalSl%(t). (5.20) 

Note that when we ignore terms of order O (j)   and higher in equation (5.16), we obtain: 

fo(t) = MTotal a%(t) = k0t0(t). (5.21) 

Equation (5.20) requires taking two time derivatives of the attachment point displacement 

£a(t) and relating it to the second time derivative of the force fo(t) in the time domain. Equation 

(5.21) would be the simplest form of implementing the approximate DtN map (5.10) for the case 

when Q is small. 

5.1.4    Implementation When a Known Resonant Frequency Exists 

When Q is not small, the kernel in equation (5.10) decays quickly. Therefore we can use (5.10) 

directly for efficient implementation.   Trouble may arise, however, if there is a single strong 
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resonance that decays slowly. A model for such a scenario is: 

fh(u>) = Mierf [-^~j + M2H(u - ti2). (5.22) 

Here H is the Heaviside step function and erf(z) is the error function of z as defined in [6]. 

M2H(u — Q2) exactly represents the single strong mode of the subsystem that we assume to be 

known. M2 is the modal mass of the mode which has resonant frequency Q,2. In equation (5.22) 

M\ + M2 = -^Xotal- Further, we let k\ = M\ü\. We use equation (5.22) with (5.6) to obtain 

the approximate DtN map as: 

t 

h{t)   =   (k0 - kiMt) + M&l J e-C-W2 [l - ül(t - r)2] &(r) dr 

t 00 

+ M2 / / &l8(uj-tt2) sin Q2(t-T)(io(T) du dr. (5.23) 
0  0 

When the natural frequency scale of the subsystem Oi is not small, the kernels in the integrals of 

(5.23) that contain the error function vanish quickly. The trigonometric kernel does not decay at 

all. We treat this trigonometric kernel here. To do this we take two time derivatives of equation 

(5.23). Treating each term individually, we have: 

dt2 JMift? J e-e-)2^2 [l - n\{t - r)2] &(r) dr\ = 

t 

and 

dt2 

t    00 

M2 I j ü\b{Ü - fi2)sinfi2(f - r)£0(r)du;dr 1 = j^l M2ü\ f smQ2(t - T)^o(r)dT I 
00 ' ^ 0 ' 

t 

=   M2Q%(t) - M2Sl52 I sin fi2(t - r)fo(r) dr. (5.25) 
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We now eliminate the integral containing the trigonometric kernel in (5.23) by using (5.24) and 

(5.25) to obtain an equation for f{{ (t) + Q^foit)- This yields: 

foit) + tf2fo(t) = *„#(*) + [(fco - *i)fi! + ^2] &(<)+ 
t 

ift?/« 
0 

-(t-T)*n?/2 (fil - 3ß?) + (oft? - fil) fi?(t - r)2 - ft?(i - r)4 £0(r)dr.(5.26) 

Equation (5.26) may be used for implementing the approximate DtN map when fii is not 

small. The integral in equation (5.26) has a quickly vanishing kernel. Thus efficient numerical 

integration of (5.26) is possible. 
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Chapter 6 

Numerical Simulations and Results 
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In this chapter we describe a numerical experiment designed to test the analytical results from 

the previous chapters. To do this, we consider the special type of subsystem described in 

chapter 5. We know the exact and an approximate DtN map for such a subsystem from the 

previous chapter. Here we replace the dynamical subsystem in the simulation by the force it 

exerts on a superstructure as predicted by the exact and approximate DtN maps. This is shown 

schematically in figures 6.1 and 6.2. Note that the number of modes in the subsystem is inversely 

related to the small parameter e introduced in section 4.2; specifically e = jg. Thus we compare 

the force predicted by the exact DtN to that predicted by the approximate DtN. 

In section 6.1 we describe the particular problem being considered. In section 6.2 we discuss 

the numerical schemes by which the analytical results of the previous chapters are implemented 

in this problem. In section 6.3 we describe the method by which the subsystem parameters are 

chosen in the simulation. Finally, in section 6.4 we show the results of our comparisons. 

6.1     Example Problem 

We consider an elastic rod (superstructure) of length L and a unit square cross section. A dy- 

namical subsystem (fuzzy structure) is attached to the end of the rod at x = L. The components 

of the subsystem are allowed unidirectional motion only. The rod interacts with the dynamical 

subsystem through a single attachment point. Figure 6.1 shows a schematic of the setup. We 

model the rod using ten elastic finite elements. We prescribe a unit step displacement at the 

end of the rod x = 0 at time t = 0. The displacement wave propagates through the elastic rod 

and interacts with the fuzzy subsystem through the attachment point. 
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Figure 6.1: Dynamical subsystem attached to super structure. 

x=0 

S=H(t) mmsmmm 
x=L 

5L(0 

/L(0 

Figure 6.2: Dynamical subsystem is replaced by DtN condition. 

We replace the dynamical subsystem in the simulation by the force it exerts on the rod as 

predicted by the exact (5.6) and approximate (5.10) DtN maps. We compare results of the 

simulations using both the DtN's. Our basis of comparison is the force between the rod and the 

equipment. 

6.2    Numerical Implementation 

The numerical results are obtained using DLEARN [7]. The time marching scheme employed 

in DLEARN is the a-method.  We refer the reader to chapter 9 of [8] for details of the time 
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marching in the rod. We modify the DLEARN program to accommodate the DtN boundary 

condition at the end of the rod that accounts for the fuzzy subsystem. We divide the discussion 

of the modifications into two parts. In section 6.2.1 we discuss the dynamics in the rod and in 

section 6.2.2 we discuss the implementation of the DtN map. 

6.2.1    Numerical Integration In The Rod 

We use an explicit time marching algorithm to propagate the displacement wave in the elastic 

rod. It is incorporated in the DLEARN program. 

The discrete finite element equations of motion describing the response of the elastic rod 

may be expressed in the form: 

M£ + C£ + K£ = F. (6.1) 

Here the vector £ contains the nodal displacements in the elastic rod. M is the symmetric 

positive definite mass matrix of the rod. C is the symmetric positive semidefinite viscous 

damping matrix and K is the symmetric positive definite stiffness matrix of the rod. In addition 

we have £(0) and £(0) specified at the end of the rod at x = 0. In the a - method the time-discrete 

equation of motion is [8]. 

M£n+1 + (1 + a)Cf+1 - aC'C + (1 + a)Kf+1 - «Kf = F(*B+a). (6.2) 

Here n is the number of the time step and a is a numerical dissipation parameter. In equation 

(6.2): 

tn+a = tn+1 + aAt. (6.3) 

We now use the following finite difference formulas to compute the displacements and velocities 
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at the next time step tn+i. Note that these formulas comprise an explicit form of implementing 

the a - method. 

A/2 

€»+i=£» + Atfn + ^-(l-20)r, (6-4) 

and 

i +   =i   + A*(l-7)£ . (6.5) 

Implicit methods of implementation are also possible. These are discussed in [8]. To start the 

process, £   may be calculated from: 

M£° = F - C£° - K£°. (6.6) 

We then compute the velocities and displacements at tn+i from equations (6.5) and (6.4), re- 

spectively. We use these results to compute the acceleration at the next time step from equation 

(6.2) and then repeat the iterative process. The above scheme allows us to compute a force at 

the end of the rod at x = L at the end of each time step. We call this force FR(t). 

6.2.2    Numerical Integration Of The DtN 

In the previous section we described the scheme to compute £0(t). We store the time history of 

displacements £o(0 at the attachment point. At the end of each time step we employ this time 

history to integrate either equation (5.6) or (5.10)1 and obtain the force due to the subsystem 

f0(t). From (5.6): 

JNote that the time histories are different for the exact and the approximate DtN's 
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Similarly for the approximate DtN, from (5.10) we get: 

fS = ko$-F(&-■■,%)• (6-8) 

The functions -F(£o,£o>' • • >£o) an^ -^(fo» *"" > £o) are tmie convolutions of the displacements of 

the attachment point. To compute these we store the displacement history of the attachment 

point for the exact and approximate DtN's separately. We use the Trapezoid Rule to integrate 

the exact DtN (5.6) or the approximate DtN (5.10) at the end of each time step to obtain 

-F(£o>£o> • • • >fo) and -F(£o>- - -'£o)> respectively. Note that we integrate the DtN's at the end 

of each time step using the displacement history of the attachment point till that time step. 

We then update the forces FR(t) in the rod by adding to it either the exact force f0(t) or the 

approximate force f0(t) due to the subsystem and then use the updated force to compute the 

displacement at the next time step. 

6.3    Determination of Equipment Parameters 

Here we describe the process by which we select our equipment parameters. We select a random 

distribution of masses and frequencies to approximate the error function distribution in (5.8). 

To do this, we first choose the number of modes in the subsystem M. We then use a pseudo 

random number generator to choose a random number between zero and one. We scale this 

distribution of random numbers to give us a frequency distribution in the range 0 < w < u>max. 

Here we choose umax = 20, with 0, given by: 

n=Vfe (6-9) 

We choose the attachment stiffness ko and the total mass of the system -^Total'  ^e cnoose 

-^Total such ^at ^ 1S °f ^e order of the mass of the rod. We denote the pth frequency by up. 
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The mass corresponding to up is given by: 

Aw. (6.10) 
dm(u) 

mp = MTarget~^- 
W=U/p 

In equation (6.10) m(u) is given by (5.8) and Au; = """\ We then compute the stiffness of 

each individual component of the subsystem using the relation: 

Kp = mpul. (6.11) 

We verify that the total mass satisfies the relation: 

M   K 

^Total = £ J * ^Target- (6-12) 
P=\    P 

We simulate the subsystem using the above choice of parameters. This subsystem corre- 

sponds to the one described in the previous chapter. We can thus validate our analytic results 

using this simulated subsystem. We compare the results obtained by using -^Total rather than 

-^Target m our aPProximate DtN's. 

6.4    Evaluating Approximate DtN's 

In this section we compare the forces predicted by the exact DtN (5.6) to those predicted by the 

approximate DtN (5.10). In different simulations, we vary the number of modes in the subsystem 

and the amount of damping in the subsystem. In figures 6.3 through 6.8 the thick curves 

represent the exact DtN results and the thin curves represent the approximate DtN results. In 

each figure the «-axis represents time t and the y-axis represents the force at the attachment 

point due to the dynamical subsystem fo(t)- Note that as the small parameter e —> 0, as the 

number of modes M —>■ oo. Figures 6.3 through 6.5 represent exact and approximate DtN's for 

subsystems with ten, one hundred and five hundred internal degrees of freedom respectively. 
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Figure 6.3: Dynamical subsystem with 10 internal degrees of freedom. 
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Figure 6.4: Dynamical subsystem with 100 internal degrees of freedom. 
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Figure 6.5: Dynamical subsystem with 500 internal degrees of freedom. 
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In figures 6.3 through 6.5 we see the effect of the number of internal degrees of freedom 

(modes) on the exact and approximate DtN's (5.6) and (5.10) respectively. Note that in these 

plots neither the exact DtN nor the approximate DtN have any added damping. As the number 

of modes M increases we expect the forces predicted by the approximate DtN in (5.10) to better 

approximate the forces predicted by the exact DtN (5.6). From these figures we see that the 

approximate DtN indeed provides a better representation of the exact DtN as the number of 

modes increase from ten (figure 6.3) to five hundred (figure 6.5). 

We now demonstrate the effe-ts of subsystem damping on the performance of the approx- 

imate DtN (5.10). In figures 6.6 through 6.8 we keep the number of degrees of freedom M 

fixed and vary the damping r\. Figures 6.6 through 6.8 contain representations of subsystems 

with one hundred internal degrees of freedom. The damping in the exact DtN of these figures 

is one percent, five percent and ten percent of critical damping, respectively. Note that the 

approximate DtN's in these figures are identical and contain no damping. 
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Figure 6.6: Subsystem with 100 degrees of freedom and 1% damping. 
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Figure 6.7: Subsystem with 100 degrees of freedom and 5% damping. 
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Figure 6.8: Subsystem with 100 degrees of freedom and 10% damping. 
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Based on the results from chapter 4 we should expect that increased damping with fixed 

M would control the long time error in the simulations. In these figures we see precisely this 

behavior as rj is increased from 1% to 10% of critical damping. We can also compare figures 6.4 

and 6.6 to see that a small amount of damping (1%) has increased the agreement between the 

exact and approximate DtN's for a subsystem with one hundred internal degrees of freedom. 
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Chapter 7 

Conclusions 
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In chapter 2 we formulated the equations of motion for a general dynamical subsystem. In 

chapter 3 we showed that a general dynamical subsystem can be represented by an exact Dirichlet 

to Neumann map. The map can be used to replace the subsystem in a dynamical simulation. In 

developing the DtN we find a generalization of the modal mass tensor of Cunniff and O'Hara [3] 

and Pierce [2]. In chapter 4 we provided approximate representations for a general dynamical 

subsystem. We proved that the error in approximating the exact DtN map of a general dynamical 

subsystem can be bounded for all time in the presence of subsystem damping. We also showed 

that in the absence of damping the error can be bounded for times of the order 0(l/e3/2), where 

e is a small parameter that is inversely proportional to the number of modes in the subsystem. 

We then showed three levels of approximations for the modal mass function (tensor) m(u>), of 

a general dynamical subsystem. In chapter 5 we discussed implementation methods for certain 

approximate DtN maps based on the natural frequency scale of the components of the subsystem. 

Finally, in chapter 6 we studied an example problem and performed a dynamical simulation using 

both our exact and approximate DtN's. The simulation demonstrates the validity of our results 

when the number of modes is high or when there is some small amount of damping. 
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ABSTRACT 
Large scale dynamic simulations can often be sim- 

plified by appropriately replacing large portions of 
the domain by a Dirichlet to Neumann, or DtN map 
(Givoli, 1992). Here we consider the problem of rep- 
resenting a dynamical subsystem, a piece of equip- 
ment aboard a naval vessel for example, in terms of 
an equivalent time domain DtN map. The exact DtN 
map is computed as a modal summation. The ex- 
act map is then approximated in both the low and 
high modal density regimes. The approximate DtN 
in the high modal density limit is computed utiliz- 
ing fuzzy-structures concepts recently developed by 
Pierce, Sparrow and Rüssel (1993) and others. The 
resulting DtN map depends on just two easily de- 
termined system parameters: the total mass and the 
high-frequency stiffness. 

INTRODUCTION 

Large scale dynamic simulations can often be sim- 
plified by appropriately replacing large portions of 
the domain by a Dirichlet to Neumann, or DtN Map 
(Givoli, 1992) . Here we consider the problem of rep- 
resenting a dynamical subsystem, a piece of equip- 
ment aboard a naval vessel for example, in terms of an 
equivalent DtN Map. In this contribution, we use the 
term "DtN" to denote the map that takes displace- 
ment histories into current forces. Here, we consider 
the force to be Neumann data, and the displacement 

to be Dirichlet data. 
We shall consider a subsystem to be attached to 

a main structure at distinct points. The DtN map 
yields the forces at the attachment points in terms of 
the displacement histories of the attachment points. 
Thus, given the DtN map for a piece of equipment, 
the effect of that piece of equipment on the dynamics 
of a structure is fully taken into account. 

Though exact representations of equipment models 
may be available, approximate representations are of- 
ten attractive. There are at least two reasons for this. 
First, the approximate representation may provide 
sufficient accuracy at greatly reduced computational 
expense. Second, and perhaps more importantly, an 
approximate representation involves only a few gross 
parameters of the dynamical system, sometimes as 
few as two. These parameters can be easily esti- 
mated, thus permitting simulations to be performed 
with relatively little knowledge of the dynamic equip- 
ment parameters. 

In the next section, we formulate the problem of 
determining the DtN in the context of an equipment 
model proposed by Pierce (1995). We then solve the 
equations of motion of the system and derive an exact 
expression for the DtN. After examining two simple 
limiting cases, we consider two main simplifications 
to the exact DtN. The first simplification is applicable 
in the limit of low modal density. The second is valid 
in the limit of high modal density. It represents a 
time-domain application of Pierce, Sparrow and Rus- 
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sei's (1993) fuzzy-structures concepts. Both simplifi- 
cations depend on relatively few dynamical parame- 
ters. 

FORMULATION 
We consider a dynamical subsystem which has a 

quadratic potential energy function in the N degrees 
of freedom, xn, n = 1,..., N. We shall assume that 
the dynamical system is attached to the outside world 
at only one attachment point. The displacement of 
the attachment point from equilibrium is denoted by 
xo{t), and we further assume that the attachment 
point has no associated mass. We will denote by fo(t) 
the force that is applied to the attachment point. The 
"DtN" condition that we will derive represents a map 
from x0(t) to fo(t). Thus, the effect of the dynamical 
subsystem can be included in a dynamical simulation 
by employing the following boundary condition at the 
attachment point 

fo{t) = Mx0(t). (1) 

Here, M denotes the DtN map. 
In what follows, XQ and xn are purely unidirec- 

tional. The extension to many attachment points and 
three dimensional displacements follows as an exer- 
cise. 

In the case when /o = 0, we can write the potential 
energy function as 

V(x0,x) = -[x • Kx + 2x0 " • x + kox0
2}.       (2) 

Here, x is an N dimensional displacement vector, K 
is an N x N positive definite matrix, " is an AT dimen- 
sional vector of spring constants, and k0 is a coupling 
spring constant. The potential energy function must 
be invariant to rigid body translation (Pierce, 1995). 
Therefore, for all a 

V{x0 + a, x + ap) = V(x0, x) (3) 

In (3), p is an N dimensional vector with each com- 
ponent equal to unity. Substituting (2) into (3) yields 

Kp 

K0 -p- - = p-Kp. 

(4) 

(5) 

We introduce the positive definite mass matrix M 
which allows us to write the kinetic energy function 
as: 

T(x)=x-Mx. (6) 

After applying Lagrange's dynamical equations of 
motion (Lanczos, 1986), we write the equations of 
motion for our system as: 

Mx + Kx(t)    =    --aro(t) (7) 

' ■ (x(t) - px0(t))    =   f0(t). (8) 

LOCAL (IN TIME) APPROXIMATIONS 
The DtN map is obtained by solving (7) for x(i), 

and substituting the result into (8). In this section 
we shall consider approximate solutions of (7) in both 
the high and low frequency limits. 

Low frequency limit 
When the time scale of the excitation is much 

slower than the natural frequencies of the subsystem, 
then the inertia of the subsystem is negligible to a 
first approximation. To obtain an approximate DtN 
in this case, we rewrite (7) as 

Kx(() = -'i0(t)-Mx. (9) 

Solving (9) by iteration yields 

x(i)    =    -K-i'xoW + K^MK^-xoit) 

-K^MK-^MK-1 - ^P- + .. (10) 
at* 

We now substitute (10) into (8) and simplify using 
(5) to obtain 

f0(t) = MTx0(t)-p-MK-1Mp^Q- + .... (11) 

Here, we have introduced the symbol MT = p • Mp 
which represents the total mass in the subsystem. We 
note that to leading order, the force is merely accel- 
erating the subsystem as a rigid body. 

High frequency limit 
Alternatively, the time scale of the excitation may 

be much higher than any of the natural frequencies 
of the dynamical subsystem. In this case, the iner- 
tia term in equation (7) dominates. We rewrite (7), 
therefore, as 

Mx(i)    =    -~x0(t)-Kx (12) 

Mx(f)    «    -~x0(t) (13) 

Taking two time derivatives of (8) and simplifying 
using (13) yields 

fo{t) = kox0(t)- --M'xoit). (14) 
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At very high frequencies, the last term in (14) can be 
neglected yielding 

fo(t) = kox0(t). (15) 

From (15), we see that in this regime the force is 
resisted primarily by the elasticity in the equipment 
mount. Based on the interpretation of (15), we refer 
to the quantity k0 as the "high-frequency stiffness." 

EXACT DtN MAP 
An exact DtN map can be constructed by solving 

(7) exactly and substituting the result into (8). An 
exact solution of (7) can be constructed in terms of 
a Green's function. The Green's function itself shall 
be found in terms of the modes of vibration of the 
dynamical subsystem. 

The Green's function 
The Green's function, g(t — r) satisfies 

Mg{t-r)+Kg(t-T) 

g(t - r) 

-'S(t-r),  (16) 

0       t<T.   (17) 

Equation (7), together with equations (16) and (17) 
show that x(i) is given by 

'(*)= /    g(t-T)x0(r)dT. 
J—oo 

(18) 

We now solve (16) for g in terms of a normal mode 
expansion. We begin by introducing a change of de- 
pendent variables 

g{t) = M-^y{t). (19) 

Here, M1/2 is the unique positive definite matrix 
which satisfies M1/2 M1/2 = M. (We shall not have 
the need to calculate M1/2 explicitly here.) Substi- 
tuting (19) into (16) and left multiplying both sides 
by M"1/2 yields 

y{t) + M-1/2KM-1/2 y(t) = -M~1/2 " S(t).   (20) 

The matrix M_1/2KM-1/2 is N x N, symmetric and 
positive definite. It therefore possesses N distinct, or- 
thonormaleigenvectors ^n = l,...,N, andN (not 
necessarily distinct) positive eigenvalues w2. Since 
/") are orthonormal and span RN, we can write 

N 

!/(*) = £,(n)*n(0- (21) 

We now substitute (21) into (20) and make use of the 
orthonormality of /") to obtain 

zn{t)+LJ2
nzn(t) = -,<»> -M-^'öit).        (22) 

Further, causality requires 

zn(t) = 0 t < 0. (23) 

Solving (22) subject to the condition (23) yields 

zn{t) = -—  W ■ MT1'2 - sin(u;ni)        t > 0. (24) 

We obtain g(t) by using (24) in (21) and (19) to find, 
for t > 0 

N    1 
g(t) = -M-1/2 ]T — ,<">[,<"> ■ M-1/2 '] sinKi). 

n=l 
W- 

71=1 

(25) 
With g(t) determined, the exact DtN condition fol- 

lows directly using (18) and (8): 

fo(t)    =    --.px0(t)- f    {--M-1'2 

J—oo 

N 1 
x V —W[M . M~1/2 '] 

n=l Un ' 

x sinun(t — T) XQ(T) >dr.   (26) 

Equation (26) can be simplified by utilizing the con- 
cept of modal mass. O'Hara and Cunniff (1963) de- 
fine the modal mass as (see also Pierce (1995)) 

mn = (p-M1/2
J'

n')2. (27) 

From the definition of J"', we note that 

M-^KM^/M^wM"). (28) 

We left multiply (28) by ' -K^M1/2, and use (4) to 
find 

". M-
1
/

2
^) = -u2

np ■ Ml'2}n\ (29) 

We now use (29) and (27) to simplify (26) and obtain 

/oit) = kox0(t)-        ^2 mnul sinun(t-T) x0(r) dr. 
J-°°n=i 

(30) 
Equation (30) represents the exact DtN for the dy- 

namical subsystem under consideration. In general, 
2N parameters are required to characterize the sub- 
system.   In practice, N can be arbitrarily large, or 
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even infinite. In such situations, it is often benefi- 
cial to consider approximations to (30) in which the 
DtN can be accurately represented by relatively few 
effective parameters. Two such approximations will 
be discussed in the next sections. 

LOW MODAL DENSITY 
The exact DtN map (30) above can simplified by 

taking explicit account of the time scales of the exci- 
tation. Already in an earlier section, we addressed the 
case when the excitation time scale was either long or 
short, respectively. Here, we can use similar approx- 
imations for each mode independently. Thus, high 
frequency modes will contribute predominantly stiff- 
ness, low frequency modes will contribute predomi- 
nantly mass, and we will find that "mid-frequency" 
modes will contribute predominantly damping. 

To make the approximations just described more 
precise, we shall introduce the short (long) time scale 
to (To)- to corresponds to the highest frequency con- 
tained in xo(t). To, on the other hand, corresponds 
to the support of xo(t), or equivalently, the lowest 
frequency it contains. With these definitions, we can 
write the force f0(t) as the sum of four contributions: 

fo(t)=   Kx0{t) + h(t) + h(t) + f3(t) (31) 
4 

Mt) = ~  X mn^n   sinun{t - T) x0(r)dT (32) 
W„<2TX/T0 

J-°° 

rt 
M*) = - X) mnun /sinw„(t - r) x0{r)dr (33) 

2n/t0<wn 
J-°° 

Mt) = - X mnUJn /sinwn(i - r) x0(r)dT. (34) 
2n/Ta<u>7l<2ir/t<, °° 

We now find local approximations to fi(t) and /2(f) 
similar to those found earlier, but here applied to time 
scales characterizing individual modes rather than 
the equipment overall. 

Low frequency modes 
Local approximations to f\ (t) are obtained by suc- 

cessive differentiation of (32), treating u>n as a small 
parameter relative to 2-K/TQ. Upon taking two time 
derivatives of (32), we find 

Ml)    =    ~     Yl     mnul[unxo(t) 
u>„ <2rr/T0 

ft 1 
-u>n /     sinwn(t-r) X0{T)(1T .(35) 

J—00 J 

In this range of frequencies, we may neglect the sec- 
ond term in (35) relative to the first term and write 

f\(t)~-^x0(t){l + O(ulT2)). (36) 

Here, ki is defined as 

mnuj*. (37) £ 
w„<27i-/T„ 

Higher approximations can be obtained by taking 
higher order derivatives of (32) and using intermedi- 
ate results to simplify. For example, taking four time 
derivatives of (32) and using (36) yields 

+ 2L       
mnUnl0lkL- 

dt* 
W„<2JT/T„ 

kL 

dt2 

-j£ib(t)(l + 0(<4:tf)). (38) 

High frequency modes 
Local approximations to /2(f) are obtained by suc- 

cessive integrations by parts. Integrating (33) by 
parts twice yields 

Mt) ~ - \kHXo{t) + mHx0{t)] (1 + 0(untoy 

Here, we define kn and m# to be 

kH    = 

(39) 

(40) 

(41) 

2ir/t0<uin 

27r/t„<u<„ 

We note that when t0 -> 00, kn —¥ k0, and m# —>• 
Mr, thus reproducing the local mass limit (11). 

Low modal density: summary 
When the modal density is such that clear distinct 

modes of vibration exist within the frequency ranges 
of interest, the exact DtN can be broken up into four 
individual contributions (c.f. equation (31)). Three 
of those contributions can be written approximately 
in a form which is local in time. We summarize those 
results here, using equations (31-34), (36) and (39): 

Mt)    =   kox0(t) + Mt) + f2{t) + f3(t)      (42) 

Mt)   ~    -fezoW (43) 

Mt)   ~    -kHx0(t) + mHx0(t) (44) 
,t 

Mt)    = -£ rnnu}lsmu>n{t - T)x0(T)dr.  (45) 
2it/T0<u„<2ir/to        °° 
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The fourth contribution, /3, can not be simplified be- 
yond the form of (45). The number of terms in the 
sum, however, can be quite small. For some appli- 
cations, as few as one term will be sufficient. Thus, 
a subsystem may be well represented by as few as 
five parameters (one term in (45)), and probably not 
many more than 17 (seven terms in (45)). We empha- 
size, however, that these parameters depend explicitly 
on the time scales present in the excitation. 

If a large number of frequencies are within the ex- 
citation time scales, then a large number of terms are 
required in equation (45). In this case, however, the 
dynamics of the subsystem may be approximated us- 
ing a high modal density assumption. In the next 
section, we discuss the high modal density limit, and 
show that the number of system parameters can be 
reduced to two; they are excitation independent and 
can be easily measured. 

HIGH MODAL DENSITY 
In the last section, we simplified the form of the 

exact DtN map (30) by making assumptions regard- 
ing the form of the excitation. In this section, we 
instead make an assumption regarding the complex- 
ity of the dynamical subsystem and thereby simplify 
the DtN map. Specifically, we assume that the modes 
are closely spaced in frequency. We also make use of 
Pierce's (1995) notion of mass as a function of natu- 
ral frequency. Therefore, we introduce the function, 
m(bj), such that 

.dm(vn) 
(w„+i - wn)——— = mn (46) 

Substituting (46) into the exact DtN condition 
(30), we obtain 

t    N dm{ujn)   3 
fo{t)    =    kox0(t)- ^(wn+i-w„) 

■/-°°n=l 

x sin ujn (t - T) xQ (T) dr.     (47) 

The assumption of high modal density, or closely 
spaced modes, allows us to replace the summation 
over natural frequencies in (47) with an integration 
over all frequencies 

t 
f0(t)    «    kox0(t) - f      f 

J—oo J 

dm(u})   3 

dw 

Form of m(cj) 
In general, the function m(w) must have the fol- 

lowing properties (Pierce, 1995): 

• ro(0) = 0. 

• lim m(w) = MT- 

dm 

dio ~ 

A function which is representative of the class of func- 
tions satisfying the above properties is 

m(w) = MT erf(w/\/2fi). (49) 

Here, erf (z) is the error function of z (Abramowitz & 
Stegun, 1972). Besides being representative of other 
similar functions, it is reasonable to assume that the 
error function will be a limiting case for infinite modal 
density, independent of the particular characteristics 
of the dynamical subsystem. Therefore, it is of par- 
ticular interest to focus on the specific form of m(u) 
as described in (49). 

Equation (49) contains two parameters which de- 
scribe the dynamical subsystem. The first is the total 
mass, MT- The second parameter is SI, which is a nat- 
ural frequency scale of the dynamical subsystem. We 
shall show later that 

fi = 
KQ 

MT' 
(50) 

x sin u) {t - T) du Xo (T) dr.   (48) 

High modal density: time domain fuzzy-structure 
Equation (48) simplifies considerably with the as- 

sumed form of m(w), equation (49). Substituting (49) 
into (48) and integrating by parts repeatedly with re- 
spect to u) yields 

f0(t) = kox0(t) - Wp/*l\t - T)[3 - tf{t - r)2] 
V71"    J-oo 

oo 

x f e-u^8Cl\osüj(t-T)du ar0(T)dT.(51) 

0 

We evaluate the remaining integral with respect to u) 
by writing cosw(t — r) = TZ{e'u^~T^}, completeing 
the square in the exponent, then taking the real part: 

/o(«)    =    kox0(t)- fkf(t -T)x0(r)dT,  (52) 
J—oo 

kf{t) = MTn
3 sit [3 - n2t2) e-'

2«2/2    (53) 
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Equation (52) is the simplified representation of the 
DtN Map under the assumptions of high modal den- 
sity, and an error function modal mass distribution 
as a function of natural frequency. The three param- 
eters appearing in (52), MT, k0, and ft, are related 
to each other as shown in the next section. 

Relation between MT, k0, and ft 
We shall now determine a relation between MT, k0, 

and ft by considering the special case of 

x0(t) = A0H(t). (54) 

Here, H(t) is the Heaviside step function, and AQ is 
the magnitude of the step. As a result of moving 
the attachment point suddenly an amount Ao, the 
force fo(t) will change suddenly, and then relax. On 
physical grounds, we can expect that 

lim f0(t) = 0. 
t-¥00 

(55) 

That is, we expect that the system will eventually 
relax back to an unstressed equilibrium. 

Substituting (54) into (52) yields 

t 

f0(t)    =    Aok0H(t)-A0Jkf(t-T)dTH(t\56) 

=    A0koH(t) - A0MTft2[l 

-(l-ft2t2)e-t2Q^2}H(t)     (57) 

->    A0[ko-MTft2] t-^oo   (58) 

Employing condition (55) with (58), we find 

fi2 = k0/MT. (59) 

High modal density: summary 
When the modal density is so high (or when damp- 

ing is such that sufficient modal overlap exists) that 
distinct modes of vibration become "blurred" in the 
frequency domain, then the exact DtN map, (30) can 
be greatly simplified. The result is (52), repeated 
here for convenience: 

/o(t)    =    kox0(t)- f    kf{t-T)x0{T)dT,(60) 
J—oo 

kf(t)    =   MTfi3fif[3-fi2*2]e-t2n2/2        (61) 

The assumptions leading to (60 and 61) are high 
modal density and an error function modal mass dis- 
tribution as a function of natural frequency. The 
three parameters appearing in (60), MT, k0, and ft, 
are related to each other by ft = y/ko/Mr- Here, as 
described earlier, MT is the total mass of the dynami- 
cal subsystem and k0 is the equivalent high-frequency 
stiffness of the subsystem. Thus, in order to model 
the effects of a dynamical subsystem on the dynamic 
response of a larger structure, one needs only two 
easily determined parameters. 
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